

Dark Matter search in a Beam Dump eXperiment at Jefferson Lab

SEPTEMBER 2-7, 2018, BOLOGNA, ITALY

Physics Motivation

An extensive experimental program based on WIMPs paradigm is searching for DM Up to now no results from DM direct search and no evidence of new physics at the weak-scale from LHC

Mass range where (traditional) Direct Detection is (almost) impossible

High intensity beam makes accelerator-based DM search highly competitive

Marzio De Napoli - INFN-CT

Heavy/Dark Photons

Volume 166B, number 2

PHYSICS LETTERS

9 January 1986

AN OLD IDEA: IF THERE IS AN ADDITIONAL U(1) SYMMETRY, THE NEW VECTOR BOSON <u>A' KINETICALLY</u> <u>MIXES WITH THE SM PHOTON</u>

TWO U(1)'S AND & CHARGE SHIFTS

Bob HOLDOM

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

A' acts as a "portal" between the SM and the new sector

Heavy/Dark Photons

Mixing induces an effective weak coupling E · e to electric charge

BDX in a nutshell

LIGHT DARK MATTER SEARCH IN AN ELECTRON BEAM-DUMP EXPERIMENT

BDX at **JLAB**

High energy beam available : 11GeV

The highest available beam current ~ 65 μ A

Integrated charge: 10^{22} EOT in ~ 10 months

- BDX detector located downstream of Hall-A beam-dump (~ 8m ug)
- New underground experimental hall

The BDX detector

DM DETECTION

modular EM Calorimeter

- 800 CsI(TI) crystals (from BaBar EMCal)
- 8 modules 10x10 crystals each
- ~ 3 m long ,~ 50x50 cm² front face 6x6 mm² SiPM readout

BACKGROUND REJECTION Two active veto layers

Plastic scintillators + WLS + SiPM

Marzio De Napoli - INFN-CT

OUTER

VETO:

Plastic

scint +

Light guide

Cosmic Background

Cosmic background measured with

the BDX detector prototype in Catania and LNS (similar overburden expected at JLab) and conservatively projected to the full detector

Expected cosmic background counts in the BDX lifetime

Energy Thresold (MeV)	Expected Counts (285 days meas.)			
200	740 ± 300			
250	57 ± 25			
300	4.7 ± 2.2			
350	0.037 ± 0.022			
	Energy Thresold (MeV) 200 250 300 350			

Beam-related Background - Simulations

Beam-dump and surrounding geometry/materials implemented in FLUKA and Geant4

6787

0.1753

0.1119

FLUKA vs GEANT4 at the beam-dump exit

FLUKA vs GEANT4 at different distances from the dump

Beam-related Background - Results

- FLUKA: biasing techniques
- High statistics simulations: 300 cores x 3 months simulating ~10¹⁷ EOT equivalent at BDX detector location

Particles produced in the BD by the 11 GeV beam are tracked to BDX detector location

6.6m iron shield + 2m concrete to stop high energy muons
different shielding configuration tested

★No n and y with E>100 MeV are found at the detector location

- ★ All the µ emitted forward and passing through the shielding are ranged-out
- ★µ emitted at a large angle in the dump, propagating in the dirt, and then, after a hard interaction, re-scattering in the detector result to a non-zero background rate but they have a kinetic energy lower than 300 MeV

All high energy SM particles ranged-out except neutrinos

Beam-related Background - Neutrinos

Neutrino

- $\pi \to \mu + v_{\mu}$ $\mu \to e + v_{\mu +} v_{e}$
- Mainly low energy (<60MeV) from decay at rest
- Some v produced in HadShower and boosted to BDX detector

 Non-negligible contribution
 of high energy v interacting in the BDX detector

Beam-related Background - On-site measurements

Measuring the flux of µ produced in the Hall-A beam-dump at the BDX location as a benchmark for simulations

- Two wells equipped with 10" pipes drilled at ~25m and ~28m from the dump
- A detector (BDX-Hodo) lowered into the pipes down to beam height to measure the μ flux when 11 GeV beam is on

11

Beam-related Background - On-site measurements

BDX HODO same technologies proposed in the final experiment

* CRISTAL

- CsI(Tl) crystal (5x5 x 30 cm²)
- 6x6 mm2 Hamamatsu SiPMs

* SCINTILLATORS

- 13 plastic scintillator paddles 1 cm thick
- 3x3 mm2 SIPM coupled via WLS fibers

* CONTAINER

• Cylindrical vessel (d=20cm, h=52cm)

• Stainless steel, water-tight

Marzio De Napoli - INFN-CT

BDX muon test

Run: from Feb 22nd to May 2nd 2018

Hall-A beam parameters:

- $\cdot I_{\text{Beam}} \sim 22 u A$
- $\cdot E_{Beam} = 10.6 \text{ GeV}$
- · Diffuser:ON
- + 1 week taken in Well II with Ebeam=4 .3 GeV

The BDX-Hodo lowered in well 1

Beam-related Background: On-site measurements

BDX Muon test DATA/SIM comparison

- ★ Absolute rates for data and simulations in agreement within the density-related uncertainty band
- ★ The shape of rates sampled at different heights is well reproduced by simulations (gaussian with the same σ)

Agreement between data and simulations proves: * the BDX simulation framework is reliable * no significant contribution from neutron bg (high energy n and/or pile-up effects)

BDX expected reach

- 10²² EOT (65 uA for 285 days)
- BDX can run parasitically to any Hall-A - 10GeV experiment

Beam-related background		Cosmic background	
nergy threshol	d N _v (285 days)	Energy threshol	d √ Bg (285 days)
300 MeV	~I0 counts	300 MeV	<2 counts

BDX SENSITIVITY IS 10-100 TIMES BETTER THAN EXISTING LIMITS ON LDM

Conclusions

- BDX is a beam-dump experiment at JLab aimed to investigate the existence of Light Dark Matter (1 MeV – 100 MeV)
- Collecting 10²² EOT in 285 days of parasitic running (~4y-calendar) at 10 GeV the BDX experiment can be 10–100 times more sensitive than previous experiments, excluding a significant area of the the parameter space in case of null results
- ✦A new experimental hall, downstream of Hall-A beam-dump, will host the BDX detector based on ~800 CsI(Tl) crystals + InnerVeto + OuterVeto
- ✦A BDX detector prototype was constructed and used to validate the proposed technology and measure cosmic background rates
- ✦ We implemented two strategies for a reliable beam-related background estimate:

✓ high statistics simulations: biasing method in FLUKA, simulating $\sim 10^{17}$ EOT (equivalent) ✓ measurement on site when the accelerator is running

+ In July BDX has been approved by the JLab-PAC46 with the maximum scientific rate

BDX Collaboration

Thank you for your attention