

Nuclear Spectroscopy – helping to understand how heavy elements are made

Andreas Görgen University of Oslo, Norway andreas.gorgen@fys.uio.no

Masterclass, EuNPC Bologna, 02.09.2018

Nucleosynthesis

from M.Wiescher, JINA lectures Nuclear Astrophysics

s – prosess : slow neutron capture

r – prosess : rapid neutron capture

z	74Se STABLE 0.89%	75Se 119.78 D 8: 100.00%	765e STABLE 9.37%	77Se STABLE 7.63%	78Se STABLE 23.77%	795e 3.26E+5 Υ β-: 100.00%	80Se STABLE 49.61% 2β-	81Se 18.45 Μ β-: 100.00%	82Se STABLE 8.73%
33	73As 80.30 D 8: 100.00%	74As 17.77 D ε: 66.00% β-: 34.00%	75As STABLE 10076	76As 1.0942 D 6-: 100.00%	77As 38.83 H β-: 100.00%	78As 90.7 M β-: 100.00%	79As 9.01 M β-: 100.00%	80As 15.2 S β-: 100.00%	81 As 33.3 S β-: 100.00%
32	720e STABLE 27.45%	73Ge STABLE 7.75%	74Ge STABLE 36.50%	75Ge 82.78 M	76Ge STABLE 1.13%	77Ge 11.30 H β-: 100.00%	78Ge 88.0 M β-: 100.00%	79Ge 18.98 S β-: 100.00%	80Ge 29.5 S β-: 100.00%
31	71Ga STABLE 39.892%	72Ga 14.10 H A: 100.00%	73Ga 4.86 H β-: 100.00%	74Ga 8.12 Μ β-: 100.00%	75Ga 126 S β-: 100.00%	76Ga 32.6 S β-: 100.0078	77Ga 13.2 S β-: 100.00%	78Ga 5.09 S β-: 100.00%	79Ga 2.847 S β-: 100.00% β-π: 0.09%
30	70Zn ≥2.3E+17 Y 0.61ጭ 2β-	712n 2.45 M β-: 100.00%	72Zn 46.5 H β-: 100.00%	73Zn 23.5 S β-: 100.00%	742n 95.6 S β-: 100.00%	75Zn 10.2 S β-: 100.00%	76Zn 5.7 S β-: 100.0078	772n 2.08 S β-: 100.00%	78Zn 1.47 S β-: 100.00%
	40	41	42	43	44	45	46	47	N

How is ⁷⁶Ge produced when $T_{1/2}$ for ⁷⁵Ge is only 83 min?

many neutron \Rightarrow rapid neutron capture

or ⁸²Se when $T_{1/2}$ for ⁸¹Se is only 18 min?

Neutron capture reactions

resonant capture

‡Г

Cross section measurements

Example: n-ToF at CERN

- > 20 GeV protons
- 1 pulse every 2.4 s
- \succ 7 × 10¹² protons/pulse
- \geq 2 × 10¹⁵ neutrons/pulse
- Flight path: 185 m
- Neutron energy range: 0.1 ev 250 MeV

BaF₂ total absorption calorimeter

 (n, γ) cross sections from neutron time of flight measurements

s – prosess : slow neutron capture

63 Ni(n, γ) cross section

Recipe:

- take 347 mg ⁶²Ni enriched to 98%
- place it in high-flux reactor (ILL Grenoble)
- after 280 days you have 10.77% ⁶³Ni
- do a ToF measurement with ^{62,63}Ni sample

measurement at DANCE / Los Alamos

- do a ToF measurement with a pure ⁶²Ni sample
- > subtract

M.Weigand, PhD Univ. Frankfurt (2014)

M. Weigand et al., PRC 92, 045810 (2015)

measurement at n-ToF / CERN

C. Lederer et al., PRC 89, 025810 (2014)

$^{63}\mathrm{Ni}(n,\gamma)$ cross section

factor 2 higher than previously thought

s-process produces:

- less ⁶³Cu and ⁶⁴Zn
- more ⁶⁴Ni, ⁶⁵Cu and heavy Zn than previously thought

measurement at DANCE / Los Alamos

M. Weigand et al., PRC 92, 045810 (2015)

measurement at n-ToF / CERN

C. Lederer et al., PRC 89, 025810 (2014)

How can we determine (n, γ) cross sections for short-lived branch points?

- Direct measurements impossible due to short lifetime.
- Rely on theory?
- Indirect measurements?

Optical model potential Level density Gamma strength function

potential important for describing absorption and scattering of the neutron

- microscopic models
- phenomenological models
- ✓ good agreement with experimental observables
- ✓ uncertainties under control

A.J. Koning, J.P. Delaroche Nucl. Phys. A 713, 231 (2003)

What is needed to calculate (n, γ) reaction rates?

✓ need experimental data

M. Guttormsen et al. Eur. Phys. J. A 51, 170 (2015) Optical model potential Level density

Gamma strength function

- count low-lying discrete levels
- \succ count resonances at S_n
- ➤ in between?
- microscopic models
- ✗ not sufficiently accurate
- phenomenological models
- describe general trends, but not details
- not sufficiently predictive

What is needed to calculate (n, γ) reaction rates?

(quasi-)continuum \rightarrow average quantity

 γ SF: average probability to decay with E_{γ}

Optical model potential Level density

Gamma strength function

- dominated by Giant Dipole Resonance
- Pygmy Resonances
- Scissors Resonance
- microscopic models
- ✗ not sufficiently accurate
- phenomenological models
- × describe general trends, but not details
- not sufficiently predictive

✓ need experimental data

T.G. Tornyi et al., Phys. Rev. C 89, 044323 (2014)

The quasi-continuum

Γ: widthD: average level spacing

γSF: average nuclear electromagnetic response

$$f_{XL}(E_{\gamma}) = \frac{\left\langle \Gamma_{XL}(E_{\gamma}) \right\rangle}{D \ E_{\gamma}^{2L+1}}$$

Primary gamma-ray spectra

Probability to emit a γ ray of energy E_{γ} from an initial excitation energy E_i

$$P(E_i, E_{\gamma}) \propto \rho(E_f) T(E_{\gamma})$$

Transmission coefficient:

$$T(E_{\gamma}) = 2\pi \sum_{XL} E_{\gamma}^{2L+1} f_{XL}(E_{\gamma})$$

we assume dipole (E1,M1) radiation

measure $P(E_i, E_{\gamma}) \rightarrow$ level density and γ SF

Oslo Scintillator Array (OSCAR)

 $\Delta E - E$ Si telescopes

Experiments at the Oslo Cyclotron Laboratory

 $\Delta E - E$ particle identification reaction kinematics \rightarrow excitation energy

M.Guttormsen et al., NIM A 648, 168 (2011) ¹⁸

The Oslo Method

primary spectrum $P(E_i, E_{\gamma})$

M. Guttormsen et al., NIM A 255, 518 (1987)

The Oslo Method

 $P(E_i, E_{\gamma}) \propto \rho(E_f) T(E_{\gamma})$

A. Schiller et al., NIM A 447, 498 (2000) A.C. Larsen et al., PRC 83, 034315 (2011)

NLD and γ SF from charged-particle reactions to constrain (n, γ) reactions

 92 Zr(p,d) 91 Zr \leftrightarrow 90 Zr(n, γ) 91 Zr 92 Zr(p,p') 92 Zr \leftrightarrow 91 Zr(n, γ) 92 Zr

M. Guttormsen et al., Phys. Rev. C 96, 024313 (2017) www.talys.eu

also for nuclei that are not accessible for direct reactions

I. Kullmann, MSc Thesis Univ. Oslo (2018)

p – nuclei								136Pr 13.1 M	137Pr 1.28 H	138Pr 1.45 M	139Pr 4.41 H	140Pr 3.39 M	141Pr STABLE 100 %	142Pr 19.12 H	143Pr 13.57 D	144Pr 17.28 M
								ε: 100.00 %	ε: 100.00%	ε: 100.00%	ε: 100.00%	ε: 100.00%		p∹ 39.98‰ ຣ: 0.02‰	β-: 100.00 %	β-: 100.00%
			130Ce 22.9 M	131Ce 10.3 M	132Ce 3.51 H	133Ce 97 M	134Ce 3.16 D	135Ce 17.7 H	136Се >0.7E+14 Ү	137Ce 9.0 H	138Ce ≥0.9E+14 Y	139Ce 137.641 D	140Ce STABLE	141Ce 3. 511 D	142Ce >5E+16 Y	143Ce 33.039 H
			ε: 100.00 %	ε: 100.00%	ε: 100.00%	ε: 100.00%	ε: 100.00 %	ε: 100.00 %	0.185% 2ε	ε: 100.00 %	0.251% 2ε: 100.00%	ε: 100.00 %	88.450%	\$ 0.00%	11.114% 2β-	β-: 100.00 %
			129La 11 e M	130La	131La	132La	133La	134La	135La	136La	137La	138La	139La STARIE	140La	141La 2.02 H	142La
s - process			11.8 M ε: 100.00%	8.7 M ε: 100.00%	59 M ε: 100.00%	4.8 H	5.912 H s: 100.00%	5.45 M	19.5 H a: 100.00%	9.87 M	6E+4 I ε: 100.00%	0.08881% 5:65.60%	99.91101	β-: 100.00%	3.92 H β-: 100.00%	91.1 M β-: 100.00%
			1005	1007	40.55		4000					p-: 34.40%				
			128Ba 2.43 D	129Ba 2.23 H	STABLE	131Ba 11.50 D	132Ba >3.0E+21 Y	133Ba 10.551 Y	134Ba STABLE	135Ba STABLE	136Ba STABLE	137Ba STABLE	138Ba STABLE	139Ba 85.26 M	140Ba 12.7527 D	141Ba 18.27 M
			ε: 100.00 %	ε: 100.00 %	0.108 78 2ε	ε: 100.00 %	0.1017 π 2ε	ε: 100.00%	2.41.25		1 83			β-: 1∂0.00%	β-: 100.00%	β-: 100.00 %
124Cs 30.9 S	125Cs 46.7 M	126Cs 1.64 M	127Cs 6.25 H	128Cs 3.66 M	129Cs 32.06 H	130Cs 29.21 M	131Cs 9.689 D	132Cs 6.480 D	133Cs STABLE	134Cs	135Cs 2.3E+6 Y	136Cs 13.04 D	137Cs 30.08 Y	138Cs 33.41 M	139Cs 9.27 M	140Cs 63.7 S
ε: 100.00 %	ຣ: 100.00 %	ε: 100.00 %	ε: 100.00 %	ε: 100.00%	ε: 100.00 %	ε: 98.40% β-: 1.60%	ε: 100.00 %	ε: 98.13% β-: 1.87%	1000	β-: 100.00% ε: 3.0E-4%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %
123Xe	124Xe	125Xe	126Xe	127Xe	128Xe	129Xe	130Xe	131Xe STARLE	132Xe STARLE	133Xe	134Xe	135Xe	136Xe	137Xe	138Xe	139Xe
2.08 H s: 100.00%	≥1.6E+14 Y 0.0952% 2ε	16.9 H ε: 100.00%	STABLE 0.0890%	36.346 D s: 100.00%	STABLE 1.9102%	STABLE	\$174BLE	21 232%	26 9086%	9.2.76 D р 1	26.8£+22 1 10.4357‰ 2β-	9.14 H β-: 100.00%	2.4E+21 1 8.8573% 2β-	β-: 100.00%	β-: 100.00%	β-: 100.00%
122I 3.63 M	1231 13.2235 H	124I 4.1760 D	1251 59.407 D	126I 12.93 D	127I STABLE	128I 2 <mark>、</mark> 99 M	129I 1.57E+7 Y	130I 12.36 H	131I 8.0252 D	132I 2.295 H	133I 20.83 H	134I 52.5 M	1351 6.58 H	136I 83.4 S	137I 24.5 S	138I 6.23 S
ε: 100.00 %	ε: 100.00 %	ε: 100.00 %	ε: 100.00 %	ε: 52.70% β∹ 47.30%	100.0	β∹: 93.10% ε: 6.90%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00%	r – oi	nly nu	clei	β-: 100.00% β-n: 7.14%	β -: 100.00% β -n: 5.56%
121Te 19.17 D	122Te STABLE	123Te >9.2E+16 Y	124Te STABLE	125Te STABLE	126Te STABLE	127Te 9.35 H	128Te 2.41E+24 ¥	129Te 69.9 M	130Te ≥3.0E+24 Y	131Te 25.0 M	132Te 3.204 D	12.5 M	41.8 M	19.0 S	136Te 17.63 S	137Te 2.49 S
ε: 100.00%	2.50	ε: 100.00%		.07%		β-: 100.00%	31.74 % 2β-: 100.00%	β-: 100.00%	34.08% 2β-: 100.00%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 % β-n: 1.31%	β-: 100.00% β-n: 2.99%

- proton capture (p, γ) ?
 difficult to find suitable environments
 because of Coulomb barrier
- \succ photodisintegration (γ process)
- heutrino-induced processes (ν process)
 (core-collapse supernovæ)

Galactic production of ¹³⁸La

>0.7E+14 Υ 0.185% 2ε	9.0 H 2: 100.00%	1380e ≥0.9E+14 Υ 0.251‰ 2ε: 100.00‰	13908 137.641 D a: 100.00%	1400e STABLE 88.450%	32.511 D β-: 100.00%	>5E+ 11.1
135La 19.5 H z: 100.00%	136La 9.87 Μ ε: 100.00%	137La 6E+4 Υ ε: 100.00%	138La 1.02E+11 Y 0.08881% 5:65.60%	139La STABLE 99.9119%	140La 1.67855 D β-: 100.00%	14: 3.9 β-: 10
134Ba STABLE 2.417%	135Ba STABLE 6.592%	136Ba STABLE 7.854%	137Ba STABLE 11.232%	138Ba STABLE 71.698%	139Ba 83.06 M β∹ 100.00%	140 12.7 ξ β-: 10
133Cs	134Cs	135Cs	136Cs	137Cs	138Cs	139

 \rightarrow need neutrino processes to explain ¹³⁸La abundance

B.V. Kheswa et al., Phys. Rev. C 95, 045805 (2017)

Do small resonances matter?

Do small resonances matter?

S. Goriely, Phys. Lett. B 436, 10 (1998)

Low-energy enhancement of γ SF

- > caused by $0\hbar\omega$ transitions
- reorientation of the spins of high-j proton and neutron orbits

Consequences of low-energy enhancement

M. Guttormsen et al., PRC 71, 044307 (2005) R. Schwengner et al., PRL 111, 232504 (2013)

- large increase in (n, γ) cross section for neutron-rich nuclei?
- measure NLD and γSF for neutron-rich nuclei?

The beta-Oslo method

neutron-rich radioactive beam
 from fragmentation or ISOL facility

 $^{A}_{Z-1}Y_{N+1}$

ß

^AX_N

- implant ions in a large, segmentet total absorption spectrometer (TAS)
- wait for beta deacy to populate highly excited states (large Q value)
- get excitation energy from sum spectrum
- get individual cascades from segments
- \succ apply Oslo method to get NLD and γ SF
- > calculate (n, γ) cross section

SuN at NSCL/MSU

A. Simon et al., NIM A 703, 16 (2013)

A. Spyrou et al., Phys. Rev. Lett. 113, 232502 (2014)

Constraint on (n, γ) cross section far from stability

64Ni STABLE 0.9255%	65Ni 2.5175 Η β-: 100.00%	66Ni 54.6 H β-: 100.00%	67Ni 21 S β-: 100.00%	68Ni 29 S β-: 100.00%	69Ni 11.4 S β∹ 100 00%	70Ni 6.0 S	71Ni 2.56 S β-: 100.00%
63Co 27.4 S β∹ 100.00%	64Co 0.30 S β∹ 100.00%	65Co 1.16 S β∹ 100.00%	66Co 209 MS β-: 100.00% β-n	67Co 329 MS β-: 100.00% β-π	68Co 99 MS β-: 100.00% β-n	69Co 180 MS β-: 100.00% β-n	70Co 14 MS β-: 100.00% β-2n

- fragmentation of ⁸⁶Kr beam at 140 MeV/u on ⁹Be
- secondary ⁷⁰Co beam from A1900 fragment separator
- implanted into SuN TAS

- > apply β -Oslo method for ⁷⁰Ni
- > calculate⁶⁹Ni $(n, \gamma)^{70}$ Ni cross section

S. N. Liddick et al., PRL 116, 242502 (2016)

Constraint on (n, γ) cross section far from stability

S. N. Liddick et al., PRL 116, 242502 (2016)

Abundance of heavy elements in the universe (solar system)

Z: characteristic energy loss ΔE in ionization chamber A/Q: magnetic rigidity $B\rho$ in dipole Q: fully stripped

- implant ions in pixelized Si detector
 - start signal (high E)
- $\succ \beta$ particle in same pixel
 - stop signal (low E)
- ignore if not correlated in space

Decay chains

need to consider

- decay of daughter & granddaughter
- \succ branching for β -delayed neutron emission

$$\frac{dX_1}{dt} = -\lambda_1 X_1$$
$$\frac{dX_2}{dt} = -\lambda_2 X_2 + \lambda_1 X_1 P_{\beta 1}$$
$$\frac{dX_3}{dt} = -\lambda_3 X_3 + \lambda_2 X_2 P_{\beta 2}$$

> 200 new half-lives

reaction network calculations

S. Nishimura et al., Phys. Rev. Lett. 106, 052502 (2011)
Z.Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014)
G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)
J. Wu et al., Phys. Rev. Lett. 118, 072701 (2017)

Gamma spectroscopy following β decay

E. Sahin et al., PRL 118, 242502 (2017)

E. Sahin et al., PRL 118, 242502 (2017)

Global nuclear structure models

Example: quadrupole deformation across the nuclear chart HFB extended by GCM with 5DCH and Gogny D1S

http://www-phynu.cea.fr/ S.Hilaire, M.Girod, Eur. Phys. J. A 33, 237 (2007) J. -P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

Shape transition at N = 60

A.Görgen and W.Korten, J.Phys.G 43, 024002 (2016)

Coulomb excitation at CERN-ISOLDE

Benchmark theoretical models: \blacktriangleright B(E2) transition strengths $\succ Q_s$ quadrupole moments

(GSB)

0.340

(2120)

-95 (1432

-121 (866)

-187

-52

 10^{+}

6+

Fission fragment spectroscopy at GANIL

Identification of fission fragments in VAMOS

3.2

3.4

M/Q

2.8

2.6

event-by-event identification in Z and A of more than 200 fission fragments

Recoil distance Doppler shift (RDDS) method

T.W.Hagen et al., PRC 95, 034302 (2017)

- picosecond lifetimes in n-rich fission fragments
- transition probabilities
- benchmarks for theory
- evolution of deformation across nuclear chart

Deformed odd-mass nuclei: particle-rotor coupling

Many more results from the same experiment

Potential energy surfaces for even-even cores (Gogny D1S)

J. -P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

Results for $_{39}$ Y, $_{41}$ Nb, $_{43}$ Tc, $_{45}$ Rh: with increasing Z:

- \succ increase of triaxiality γ
- \blacktriangleright decrease of deformation ε_2

T.W. Hagen, PhD Univ. Oslo (2016)T.W. Hagen et al., PRC 95, 034302 (2017)T.W. Hagen et al., Eur. Phys. J. A 54, 50 (2018)

