

M. Mastromarco on behalf of the n_TOF Collaboration

06/09/2018

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile

Mario Mastromarco @ EuNPC 2018, Bologna, Italy

Main motivation

✓ FAs of current Light Water Reactor make extensive use of the socalled "burnable neutron poisons" characterized by a neutron capture cross section comparable or higher than ²³⁵U(n, f);

✓ Among these isotopes the most common is Gadolinium, taking advantage of the very large capture cross section at neutron energies below 1 eV of the two odd isotopes: ¹⁵⁵Gd and ¹⁵⁷Gd;

 Accurate predictions about their burning rate are fundamental for safety reasons and predicting the appearance of FAs reactivity peak and its intensity;

State of the Art: ¹⁵⁵Gd

155Gd neutron capture cross-section

State of the Art: ¹⁵⁷Gd

157Gd neutron capture cross-section

Google

Google

n_TOF facility @ CERN: neutron flux characteristics

06/09/2018

Mario Mastromarco @ EuNPC 2018, Bologna, Italy

Experimental setup

4 deuterated benzene C_6D_6 liquid scintillator detectors placed at 90° with respect to each other and in front of the sample.

The total energy detection principle was used by combining the detection system described above with the so-called **Pulse Height Weighting Technique (PHWT)** (see Ref. [1] and [2])

• Two sample of ¹⁵⁷Gd:

thin sample of 4.7 mg thick sample of 191.6 mg

• Two sample of ¹⁵⁵Gd:

thin sample of 10 mg thick sample of 100.6 mg

- Empty and natPb: background
- Gold: normalization

P. Schillebeeckx, et al., Nucl. Data Sheets 113 (2012) 3054
A. Borella, et al., Nucl. Instrum. & Methods A 577 (2007) 626

Yield calculation

$$Y(E_n) = \frac{N}{S_n + E_n \frac{A}{A+1}} \frac{C_w(E_n) - B_w(E_n)}{\varphi_n(E_n) f_{BIF}(E_n)}$$

N

Normalization factor

- $C_w(E_n) B_w(E_n)$
- Sample counts background subtracted
- $S_n + E_n \frac{A}{A+1}$
- Energy of the compound nucleus

 $\varphi_n(E_n) f_{BIF}(E_n)$

Flux fraction intercepted by the sample

Background

Quality check: Calibrations + WF

- Calibrations:
 - 1. Linear
 - 2. Quadratic
- Weighting Functions:
 - 1. Exponential emission (7 cases) and omogeneous, threshold 150, 175 and 200 keV

Yields in agreement within 1.5 %

Yield: Gold Normalization @ 4.9 eV

18

Yield: thermal region

19

Yield: thermal region, the expected yield

Yield: thermal region, the expected yield

Yield: BIF correction

06/09/2018

Yield: BIF correction

Yield: BIF correction

Systematic uncertainties

Source of	$^{155}\mathrm{Gd}(\mathrm{n},\gamma)$		$^{157}\mathrm{Gd}(\mathrm{n},\gamma)$	
uncertainty	near thermal	resonance region	near thermal	resonance region
PHWT	1.5%	1.5%	1.5%	1.5%
Normalization	1.5%	1.5%	1.5%	1.5%
Background	1.4%	$\approx 1\%$	1.0%	$\approx 1\%$
Sample mass	1.0%	< 0.1%	2.1%	< 0.1%
BIF	2.0%		2.0%	
Flux	1.0%	1.0%	1.0%	1.0%
Total	3.5%	2.5%	3.9%	2.5%

^{155, 157}Gd thick: resolved region (ENDF Upper Limit)

28

^{155, 157}Gd thick: resolved region (ENDF Upper Limit)

¹⁵⁵Gd: RSA by SAMMY code

¹⁵⁵Gd: RSA by SAMMY code

¹⁵⁵Gd: RSA by SAMMY code

¹⁵⁵Gd: Resonance kernels

¹⁵⁷Gd: thermal region

¹⁵⁷Gd: RSA by SAMMY code

¹⁵⁷Gd: RSA by SAMMY code

Mario Mastromarco @ EuNPC 2018, Bologna,

¹⁵⁷Gd: RSA by SAMMY code

¹⁵⁷Gd: Resonance kernels

RSA: Above the upper limit

RSA: Above the upper limit

Conclusions

- The ^{155,157}Gd(n,y) reaction has been analyzed up to 1 keV; from RSA by R-matrix code the cross-section has been extracted from thermal to about 1 keV;
- These data sets can be used for future evaluations combining with the results of a new transmission measurement;
- In the RRR the comparisons with ENDF/B-VIII.0 and JEFF-3.3 data libraries show a fair agreement whereas sizable differences are present with Leinweber et al. data and with JENDL-4.0 evalutation;
- The thermal cross-sections in this work are about 2% higher for ¹⁵⁵Gd and 6% smaller for ¹⁵⁷Gd than those reported in nuclear data libraries;
- Paper submitted (https://arxiv.org/abs/1805.04149v1).

06/09/2018