Measurement of the ¹²C(p,γ)¹³N S-factor in inverse kinematics

<u>Stefan Reinicke^{1,2}</u>, Shavkat Akhmadaliev¹, Daniel Bemmerer¹, Marcel Grieger^{1,2}, Felix Ludwig^{1,2}, Stefan Schulz^{1,2}, Ronald Schwengner¹, Klaus Stöckel^{1,2}, Marcell Takács^{1,2}, Louis Wagner^{1,2}, and Kai Zuber²

¹ Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
² Technische Universität Dresden

2018 European Nuclear Physics Conference

Bologna/Italy, 06.09.2018

Motivation

- Part of an effort to restudy the CNO cycle
- ¹²C(p,γ)¹³N dominates CNO rate in early developement phase of stars and in outer parts of solar core
- Responsible for ¹³C production in red giant stars
- Radial emission profile of solar neutrinos from β⁺-decay depends on ¹²C(p,γ)¹³N rate

Member of the Helmholtz Association

State of the art

Aim of this work

- Measurement in wide energy range between 130 and 450 keV
- Improve data in low energy region
- Use of inverse kinematics (no previous data with this method)
 - Different systematics
 - Lower beam induced background
- Low natural background due to thick lead shielding and active muon veto

Astrophysical S factor:
$$\sigma(E) = S(E) \frac{1}{E} e^{-2\pi\eta}$$

Setup

Accelerator and ion beam

- Rossendorf 3 MV Tandetron accelerator
- ¹²C²⁺ beam on target: 5 20 μA

Targets

- TiH₂ targets with Ta backing
 - 3 hydrated, 200 nm TiH₂
 - 2 hydrated, 100 nm TiH₂
 - 1 H-implanted, 100 nm TiH₂
- Mounted with 55° angle towards beam axis

Detector and shielding

- HPGe detector with 90% relative efficiency at 55°
- 12 cm thick lead castle
- 5 cm thick scintillators for active muon veto

Setup (continued)

Target chamber and detector

Data aquisition

- Analog chain
 - ORTEC 671, ORTEC 919E (MAESTRO, histogramming)
- Digital chain
 - CAEN N1728b 100 Ms/s digitizer (TNT2, list mode data)

Member of the Helmholtz Association

Gamma-ray spectra

Member of the Helmholtz Association

Gamma-ray spectra

Member of the Helmholtz Association

Nuclear Resonant Reaction Analysis (NRRA)

Target #2, 200 nm, hydrated

Target scans

- Use of ¹H(¹⁵N,αγ)¹²C reaction
 - Yield of $E_v = 4439 \text{ keV}$
 - E_{15N} = 6.4 MeV narrow resonance

Reinhardt+, Nucl. Inst. Meth. B 381, 58-66 (2016)

- Measured each day and after switching the target
- Changed target after significant decrease of hydrogen content
 - After 2-3 days for 200 nm targets
 - After 1 day for 100 nm targets

Member of the Helmholtz Association

Nuclear Resonant Reaction Analysis (NRRA)

Target #2, 200 nm, hydrated

Target scans

- Use of ¹H(¹⁵N,αγ)¹²C reaction
 - Yield of $E_v = 4439 \text{ keV}$
 - E_{15N} = 6.4 MeV narrow resonance

Reinhardt+, Nucl. Inst. Meth. B 381, 58-66 (2016)

- Measured each day and after switching the target
- Changed target after significant decrease of hydrogen content
 - After 2-3 days for 200 nm targets
 - After 1 day for 100 nm targets

Member of the Helmholtz Association

Assumed energy dependence of S

Member of the Helmholtz Association

Assumed energy dependence of S (continued)

Conclusion

130 - 200 keV:

- Present data on average about 20 % higher than NACRE II (consistent within error bars)
- Lower limit given by cosmic ray induced BG

230 - 415 keV:

 Present data consistent with NACRE II fit

420 - 450 keV:

Present data significantly lower

Member of the Helmholtz Association

Stefan Reinicke | Institute of Radiation Physics | s.reinicke@hzdr.de | www.hzdr.de

Summary

- Measurement of ${}^{12}C(p,\gamma){}^{13}N$ S-Factor in inverse kinematics at $E_{cm} = 130 - 450 \text{ keV}$
- New data in low energy region about 20% higher than NACRE II
- New data between 420 450 keV significantly below fit
 - Possible problem with resonance energy

Outlook

- Use of new data for extrapolation towards astrophysical energies
- Check resonance energy
- Extension towards lower energies
 - Use of underground accelerator to reduce laboratory background
 - LUNA Gran Sasso \rightarrow direct kinematics
 - Felsenkeller Dresden \rightarrow inverse kinematics

Member of the Helmholtz Association

Backup

Member of the Helmholtz Association Stefan Reinicke | Institute of Radiation Physics | s.reinicke@hzdr.de | www.hzdr.de

Determination of S factor

Predicted yield Y_{pred}

- Measured target profile divided into 1000 thin slices
- Calculation of energy *E*_{cm,i} in each slice using stopping power from SRIM
- Assumed energy dependence S_{pred}(E) from NACRE II curve

Effective Energy $E_{\rm eff}$

 Mean value of the energy of each slice weighted with its yield contribution

$$S_{\text{exp}}(E_{\text{eff}}) = \frac{Y_{\text{exp}}}{Y_{\text{pred}}}S_{\text{pred}}(E_{\text{eff}})$$

Member of the Helmholtz Association

Determination of S factor (continued)

Member of the Helmholtz Association

Stefan Reinicke | Institute of Radiation Physics | s.reinicke@hzdr.de | www.hzdr.de

Page 16

Hydrogen content

Member of the Helmholtz Association

Uncertainties

S-Factor:

Quantity	Stat. uncert.	Sys. uncert.
Counts	1.0 – 54 %	
Change of H content	0.7 – 39 %	
Stopping (SRIM)		3 – 8 %
Fit of target scan		0.1 – 3 %
Efficiency		1.6 %
Charge		1 %
total	2.3 – 59 %	3.5 – 8.7 %

Quantity	Stat. uncert.	Sys. uncert.
Change of H content	0.0 – 6.2 keV	
Accelerator voltage	0.1 keV	
Stopping (SRIM)		0.9 – 2.9 keV
Fit of target scan		0.1 – 1.3 keV
Energy calibration		0.2 keV
total	0.1 – 6.2 keV	0.9 – 3.2 keV

Member of the Helmholtz Association

Stefan Reinicke | Institute of Radiation Physics | s.reinicke@hzdr.de | www.hzdr.de

Effective energy: