Fusion in massive stars: Pushing the ¹²C+¹²C cross-section to the limits with the STELLA experiment at IPN Orsay David Jenkins

University of York, UK

USIAS Strasbourg, France

Outline

- I. C burning, where, why, which reactions ?
- II. Experimental efforts to measure ¹²C+¹²C /new technique
- III. The STELLA FATIMA experiment
- IV. Results of the comissioning phase / ¹²C+¹²C
- V. Conclusions

Burning phases in massive stars

- energy production
- ➤ time scale
- nucleosynthesis

Carbon burning: a crucial phase in the stellar nucleosynthesis

 key reactions at each stage of stellar burning

Fuel	Main Product	Secondary Product	Т (10 ⁹ К)	Time (yr)	Main Reaction
н	He	¹⁴ N	0.02	10 ⁷	4 H → ^{CNO} 4He
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → ¹² C ¹² C(α,γ) ¹⁶ O
c	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
O	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

- In a star of 8-11 Solar masses, a carbon flash lasts just milliseconds.
- In a star of 25 Solar masses carbon burning lasts about 600 years.

Fusion reactions at thermonuclear energies

Cross-sections for some light systems at subcoulomb energies

R. Stokstad et al., Phys.Rev.Lett. 37 (1976)

Ikeda diagram from microscopic calculations

Carbon burning: ${}^{12}C + {}^{12}C$, the main reaction

Carbon burning: ${}^{12}C + {}^{12}C$, the main reaction

- Single particles or γ
- Extremely sensitive to background
- Extrapolations with very different trends
- Crucial role of resonances, impact on the reaction rate ?

LETTER

An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino^{1,2}*, C. Spitaleri^{2,3}, M. La Cognata², S. Cherubini^{2,3}, G. L. Guardo^{2,4}, M. Gulino^{1,2}, S. Hayakawa^{2,5}, I. Indelicato², L. Lamia^{2,3}, H. Petrascu⁴, R. G. Pizzone², S. M. R. Puglia², G. G. Rapisarda², S. Romano^{2,3}, M. L. Sergi², R. Spartá² & L. Trache⁴

¹²C+¹²C cross-sections, sources of uncertainties nb to pb range

1) Backgrounds:

Detection of charged particles, p and α :

 $^{12}C + H \rightarrow p \text{ and } ^{12}C + D \rightarrow p \text{ or } d$

Results

New challenges

Increase beam intensity

Adapt target system

Use of the *y*-particle coincidence technique with better gamma efficiency

Challenges for the STELLA + FATIMA project

- γ -particle coincidences : Efficiency_{Tot} = $\varepsilon_{\gamma} \times \varepsilon_{part}$
- Contamination
- Carbon build-up
- Thin target under high intensity beam
- 'Long' beamtime

Particle detection

- Annular DSSD, MICRON chip Collab. York
- New PCB design / ceramics
- New pin connectors
- $\Delta\Omega \sim 24 \%$ of 4π .

Particle detection

- Annular DSSD, MICRON chip
- New PCB design / ceramics
- New pin connectors
- $\Delta\Omega \sim 24 \%$ of 4π .

Gamma detection

- Up to 36 LaBr₃ detectors from the FATIMA collaboration (P. Regan et al.)
- Cylindrical geometry IPHC designed mechanical support, Strabourg + York construction

Self activity

₽ = 8% @ 440 keV

• ε = 5% @ 1634 keV

Design IPHC : G. Heitz / M. Heine

Gamma detection

- Up to 36 LaBr₃ detectors from the FATIMA collaboration (P. Regan et al.)
- Cylindrical geometry IPHC designed mechanical support, Strabourg + York construction
- Self activity
- ε = 8% @ 440 keV
- ε = 5% @ 1634 keV

Design IPHC : G. Heitz / M. Heine

Targets

Collaboration : IPHC and GANIL

- Cryogenic pumping
- Fixed target system
- Rotating target (> 1000 rpm)
- Ι>1ρμΑ

Targets

- Cryogenic pumping
- Fixed target system
- Rotating target (> 1000 rpm)
- I>1 pμA

DAQ

- µTCA system (CERN)
- 96 channels
- 125 MHz clock
- Synchronized with the FATIMA DAQ.

Beam

- Andromede facility, University of Paris-Sud Orsay
- 4 MV Pelletron
- ECR Source
- ^{12}C up to 10 μA

S3B - Without coincidences

Self activity & γ of interest from ¹²C+¹²C fusion

Coincidence with 1 particle : γ from fusion

p₁ cross section vs center of mass energy

Cross section consistent with previous experiments Analysis performed by G. Fruet and M. Heine

Timing and background ...

Timing and background ...

Conclusions

- Succesfull comissioning of the STELLA + FATIMA experiment
- 12 energy points explored $E_{Lab} = 11$ to 5.6 MeV consistent with previous work
- Succesful test of the rotating target system
- Data under analysis
- High intensity phase (¹²C+¹²C, I > 1 μA): Sept. – Dec. 2017
- Other systems in the coming phases

Conclusions

... astrophysics ?

Results from the Gammasphere run

- Reduced reaction rates match the observed ²⁶Al abundance in the Galaxy.
- And, it also leads to a further enhancement of the ⁶⁰Fe production in the Galaxy
- K. Knie et al., Phys. Rev. Lett. 83 (1999) & 93 (2004)
- A. Wallner et al., Nature 532, 69 (2016)
- L.R. Gasques et al., Phys. Rev. C76, 035802 (2007)

Thanks !

University of Strasbourg and IPHC (France): S.C, G. Fruet, F.Haas, M.Heine et al.

University of York (UK): D.Jenkins , L.Morris

IPN Orsay : S. Della Negra, F. Hammache, N. de Séreville, P. Adsley, A. Meyer et al.

Argonne National Laboratory (USA):

C.L.Jiang, D.Santiago-Gonzalez, K.E.Rehm, B.B.Back et al.

University of Surrey (UK):

P.H. Regan, M. Rudigier

GANIL (Caen, France): C. Stodel et al.

University of Aarhus (Denmark): O. Kirsebom

