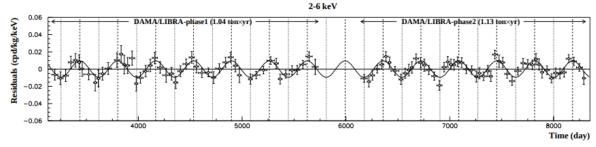





## Dark matter search with the SABRE experiment

CLAUDIA TOMEI FOR THE SABRE COLLABORATION EUNPC 2018, SEPTEMBER 2-7, 2018, BOLOGNA

#### Dark matter via annual modulation




- Direct detection principle: dark matter scattering off detector nuclei
- Annual modulation of the count rate is a **model independent** signature
  - period 1 year
  - maximum of modulation around June 2<sup>nd</sup>

$$R \approx S_0 + S_m \cos(\frac{2\pi}{1\text{yr}}(t - t_0))$$

Expected rate in an Earth-based detector is modulated: S<sub>m</sub>/S<sub>0</sub> ~O(1%)

**DAMA/LIBRA** experiment at LNGS modulation phase1 + phase2: total **exposure 2.17 ton x yr** 



DAMA background ~1 cpd/kg/keV DAMA modulation 0.0095 cpd/kg/keV **Modulation significance 11.90 C.L.** 

#### <u>arXiv:1805.10486</u>

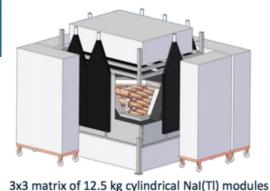
#### Sodium-iodide with Active Background REjection



- Development of ultra-high purity Nal(TI) crystals
  - High purity Nal powder
  - Clean crystal growth method
- 2. Low energy threshold

1.

- High QE Hamamatsu PMTs directly coupled to the crystal
- 3. Passive shielding + active veto
  - Unprecedented background rejection and sensitivity with a NaI(TI) experiment
- 4. Two identical detectors in northern and southern hemispheres
  - seasonal backgrounds have opposite phase in northern and southern hemispheres
  - dark matter signal has same phase


#### Other Nal experiments worldwide

ANAIS-112 @ Canfranc (Spain) Setup: 9 x 12.5 kg crystals (112.5 kg). Muon tagging. Gamma (lead, also ancient), Anti-Rn box and neutron (PE) shielding. Data taking started Aug 2017.

- Alpha Spectra crystals: <sup>40</sup>K and <sup>22</sup>Na peaks and <sup>210</sup>Pb (bulk+surface) and <sup>3</sup>H continua are the most significant contributions in the very low energy region. Bkg ~ 4 cpd/kg/keV (single hit)
- Outstanding light collection: ~15 phe/keV
- Threshold: 1 keV (trigger), 2 keV (sensitivity)

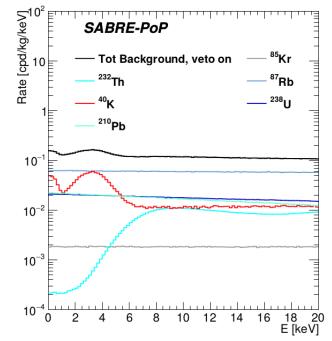
COSINE-100 @ YangYang (South Korea) Joint collaboration between DM-Ice and KIMS Setup: 8 crystals (106 kg). Muon tagging. Gamma (3cm Cu + 20 cm Pb) shield, LS veto (~ 2000 | LAB). Data taking started Sep 2016.

- Alpha Spectra crystals. Bkg 2-4 cpd/kg/keV (single hit)
- Threshold: 2 keV (goal is 1 keV)
- R&D for COSINE-200 powder purification and crystal growth facility @ IBS in Korea (mass production facility for purification under construction)



(112.5 kg of active mass)




#### The SABRE crystal



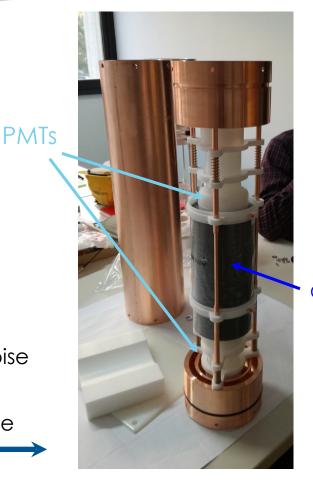
#### Ultra pure NaI(TI) crystals

- Astro Grade powder (Sigma Aldrich)
- Clean growth procedure: collaboration between Princeton and RMD, Boston
- A crystal of 3.6 kg (6 kg before cut) has been produced recently (131 mm length x 98 mm diameter)
- Simulation show that the internal background in the crystal can be as low as ~0.15 cpd/kg/keV in [2-6] keV
  - dominated by Rb (upper limit)
- provided that <sup>210</sup>Pb, <sup>3</sup>He and cosmogenics are kept under control.

| Element | DAMA powder | DAMA crystals              | Astro-Grade | SABRE crystal |         |
|---------|-------------|----------------------------|-------------|---------------|---------|
|         | [ppb]       | [ppb]                      | [ppb]       | [ppb] (*)     | 6       |
| K       | 100         | ~13                        | 9           | 9             | . (     |
| Rb      | n.a.        | < 0.35                     | < 0.2       | < 0.1         | 1       |
| U       | $\sim 0.02$ | $0.5 - 7.5 \times 10^{-3}$ | $< 10^{-3}$ | $< 10^{-3}$   | -       |
| Th      | $\sim 0.02$ | $0.7 - 10 \times 10^{-3}$  | $< 10^{-3}$ | $< 10^{-3}$   | miliaaa |

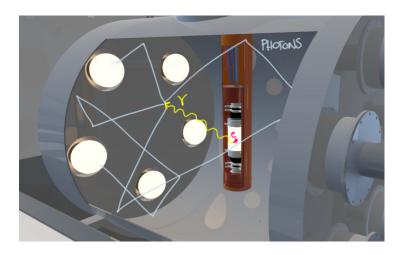


(\*) 2 kg test crystal grown from Astro Grade powder with same technique


## Low energy sensitivity

SABRE aims to be sensitive to the energies in the range between [1-6]  $\text{keV}_{ee}$ 

Current Design:


- 2 x Hamamatsu R11065-20 3" PMTs per crystal with High QE: >35% and low contaminations
- Direct PMT-Crystal coupling for maximal light yield
- Custom preamplifiers and super bialkali photocathodes → less afterglow and dark noise

Low-radioactivity copper enclosure now @ PU for the assembly of the detector module



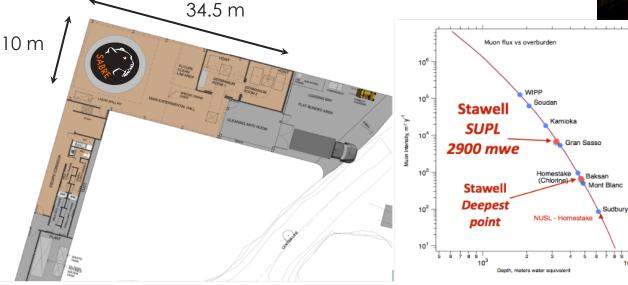
#### Active veto system

- A liquid scintillator veto (PC+PPO 3g/l) surrounding the Nal detector at 4π
- Veto events with E > 100 keV in the liquid scintillator
- Strongly reduce:
  - external backgrounds
  - internal backgrounds that release energy also in the liquid scintillator: <sup>40</sup>K



<sup>40</sup>K (11% BR) decays through electron capture to <sup>40</sup>Ar

- γ1460 keV
- X-rays, Auger electrons 3 keV




#### Double location

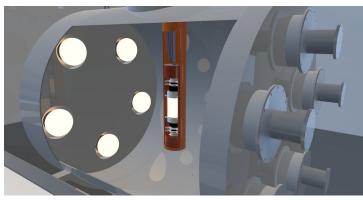
- Twin experiments:
  - LNGS (Italy)
  - SUPL (Australia)
- Different environmental conditions:
  - Seasonal effects with opposite phase
  - Rock composition and radio-purity
  - Independent radon, temperature, pressure/control systems

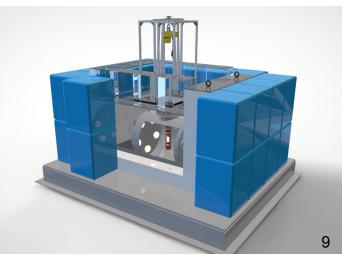






- Hosted in the Stawell Gold Mine, Victoria, Australia
- Construction second half of 2018
- Will host SABRE and other experiments


## The SABRE Proof-of-Principle (PoP)


#### Goals:

- Test active veto performance
- Fully characterise the intrinsic and cosmogenic backgrounds

#### Layout:

- 1 Nal(TI) crystal
- Crystal and PMTs will be coupled directly with optical coupling gel and sealed into a highly radio-pure copper enclosure
- Active veto:
  - Cylindrical vessel ( $\emptyset \times h$ ) = (1.3 m x 1.5 m)
  - PC+PPO (3g/I) scintillator (mass  $\approx$  2 ton)
  - 10 Hamamatsu R5912-100 PMTs
- External shielding: combination of lead, polyethylene and water, sealed and filled with nitrogen





## Status of the SABRE PoP @ LNGS

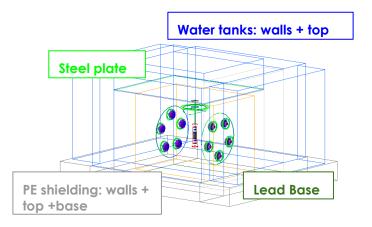


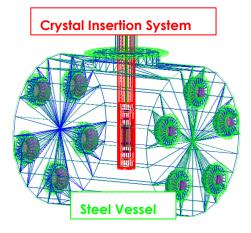
Shielding and vessel mounted in Hall C

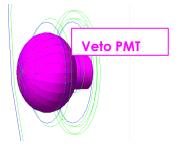







SABRE


#### Status of the SABRE PoP @ LNGS

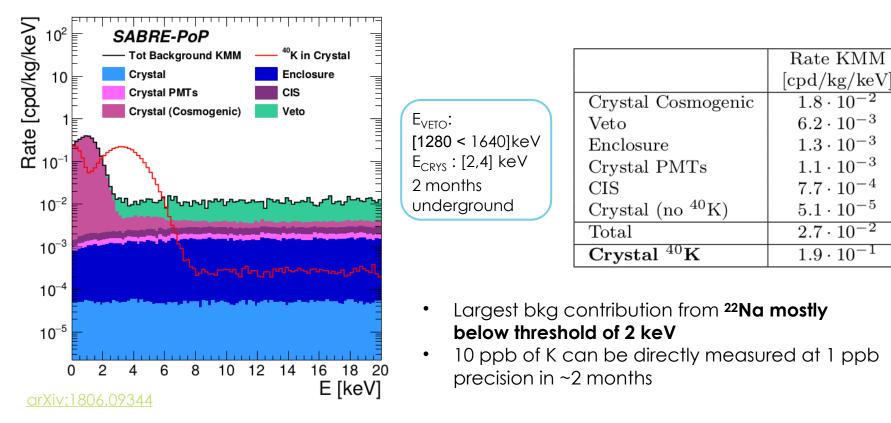

- Shielding assembled
- Veto tank cleaned, internally covered with Lumirror<sup>®</sup> and equipped with PMTs
- Crystal and enclosure in Princeton, will be mounted and shipped to LNGS
- Data taking with PoP foreseen in the second half of 2018




# Monte Carlo simulation of the background

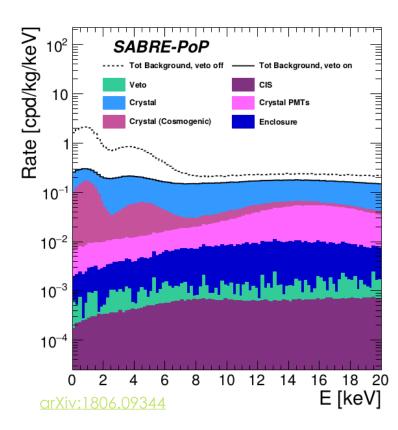







- GEANT4 based code with detailed geometry implementation
  - Crystal
  - **Crystal PMTs**: quartz window + body + feedthrough
  - **Enclosure**: wrapping, copper enclosure and small components inside
  - Crystal Insertion System (CIS): copper tube, steel bar
  - Veto: steel vessel + liquid scintillator + 10 veto PMTs
  - Shielding: water + polyethylene + steel + lead




#### K measurement mode

- Target <sup>40</sup>K electron capture (3 keV Auger e<sup>-</sup> + 1.46 MeV γ) in the crystal and other processes with large energy deposits in the scintillator
- Coincidences Cystal+Scintillator allow to study other intrinsic BKGs that give a energy release in the scintillator



#### Dark matter measurement mode

- Test the active veto rejection power of the liquid scintillator system
- Measure background level after veto in the crystal

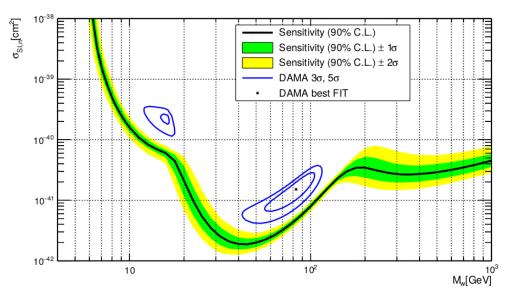


Veto on:  $E_{VETO} < 100 \text{ keV}$  $E_{CRYS}$ : [2,6] keV

6 months underground

|                    | Rate, veto OFF      | Rate, veto ON       |
|--------------------|---------------------|---------------------|
|                    | [cpd/kg/keV]        | [cpd/kg/keV]        |
| Crystal            | $3.5 \cdot 10^{-1}$ | $1.5 \cdot 10^{-1}$ |
| Crystal Cosmogenic | $3.0 \cdot 10^{-1}$ | $3.9 \cdot 10^{-2}$ |
| Crystal PMTs       | $4.3 \cdot 10^{-2}$ | $3.5 \cdot 10^{-2}$ |
| Enclosure          | $9.5 \cdot 10^{-3}$ | $3.6 \cdot 10^{-3}$ |
| Veto               | $3.0 \cdot 10^{-2}$ | $5.7 \cdot 10^{-4}$ |
| CIS                | $3.7 \cdot 10^{-3}$ | $4.6 \cdot 10^{-4}$ |
| Total              | $7.4 \cdot 10^{-1}$ | $2.2 \cdot 10^{-1}$ |

- Veto rejection is ~70%
- Total background 0.22 cpd/kg/keV, 5 times lower than DAMA background
- Highest contribution from Rb in the crystal, but we used the the upper limit contamination
  <sup>14</sup>


## SABRE expected sensitivity

Assumptions:

- 3 years exposure
- 50 kg of NaI(TI) crystals
- average background 0.22 cpd/kg/keV in [2-6] keV region
- Quenching factor for Na:  $0.13 < Q_{Na} < 0.21$ , for I:  $Q_{I} = 0.09$

The SABRE full scale can:

- Confirm modulation with amplitude observed by DAMA at 6σ
- Refute it at  $5\sigma$
- Exclude spin independent WIMP-nuclear scattering as strong as 10<sup>-42</sup> cm<sup>2</sup>



## Summary and conclusions

**SABRE** can perform an independent high sensitivity verification of the DAMA/LIBRA modulation.

#### **SABRE** features:

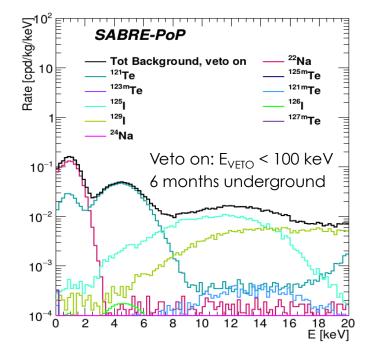
High purity Nal(Tl) crystals Low energy sensitivity Active background rejection Twin detectors

- **Proof of Principle** phase in preparation and expected to run in the second half of 2018
- Background levels evaluated with GEANT4 simulations:
  - 0.027 cpd/kg/keV for KMM (<sup>40</sup>K excluded)
  - 0.22 cpd/kg/keV for DMM



Full scale experiment can confirm (reject) annual modulation with amplitude observed by DAMA/LIBRA with 3 years of data at 6 (5) sigma.

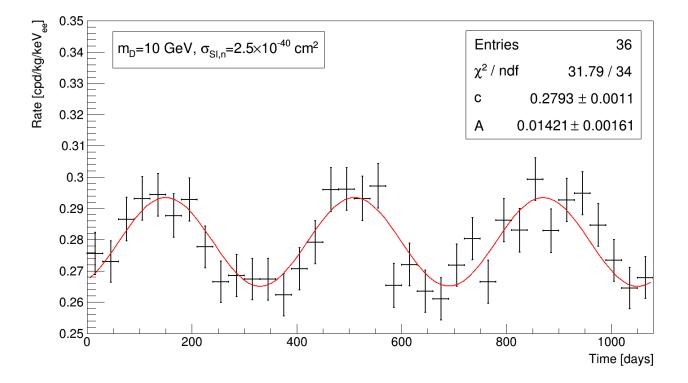
## Backup slides


## Crystal cosmogenic background

arXiv:1806.09344

Cosmogenic activation assumptions:

- <sup>22</sup>Na and <sup>126</sup>I measured at LNGS on Astro Grade powder
- <sup>24</sup>Na and <sup>129</sup>I measured from DAMA collaboration on their crystals
- other isotopes measured from ANAIS collaboration on their crystals


ROI: 2-6 keV



| Isotope             | Rate, veto OFF      | Rate, veto ON       |  |  |  |  |
|---------------------|---------------------|---------------------|--|--|--|--|
|                     | [cpd/kg/keV]        | [cpd/kg/keV]        |  |  |  |  |
| Cosmogenic          |                     |                     |  |  |  |  |
| $^{121}\mathrm{Te}$ | $2.6 \cdot 10^{-1}$ | $3.3 \cdot 10^{-2}$ |  |  |  |  |
| $^{22}$ Na          | $3.6 \cdot 10^{-2}$ | $2.7 \cdot 10^{-3}$ |  |  |  |  |
| $^{125}$ I          | $1.8 \cdot 10^{-3}$ | $1.8 \cdot 10^{-3}$ |  |  |  |  |
| $^{129}$ I          | $3.4 \cdot 10^{-4}$ | $3.4 \cdot 10^{-4}$ |  |  |  |  |
| $^{126}$ I          | $2.0 \cdot 10^{-4}$ | $1.3 \cdot 10^{-4}$ |  |  |  |  |
| $^{121m}$ Te        | $1.3 \cdot 10^{-4}$ | $7.0 \cdot 10^{-5}$ |  |  |  |  |
| $^{123m}$ Te        | $7.6 \cdot 10^{-5}$ | $5.1 \cdot 10^{-5}$ |  |  |  |  |
| $^{127m}$ Te        | $5.0 \cdot 10^{-5}$ | $4.9 \cdot 10^{-5}$ |  |  |  |  |
| $^{125m}$ Te        | $5.3 \cdot 10^{-6}$ | $5.1 \cdot 10^{-6}$ |  |  |  |  |
| $^{24}$ Na          | -                   | -                   |  |  |  |  |
| Tot Cosmogenic      | $3.0 \cdot 10^{-1}$ | $3.9 \cdot 10^{-2}$ |  |  |  |  |
| (180  days)         |                     |                     |  |  |  |  |

#### SABRE expected modulation

$$m_D = 10 \, GeV, \, \sigma_{SI,n} = 2.5 \cdot 10^{-40} \, cm^2$$

