

2018 European Nuclear Physics Conference, September 2nd – 7th Bologna, Italy, San Domenico Center

Isomers Production in ²³⁸U Photofission

Cristiana Oprea^{1,3}, Alexandru Mihul^{2,3}, Ioan Oprea¹, Ion Gruia⁴, Oleg D. Maslov⁵, Anatoly G. Belov⁵, Marina V. Gustova⁵

¹JINR, FLNP, Dept of Exp Nucl Phys, Dubna, RF

E-mail: istina@nf.jinr.ru

²CERN, Genève, CMS, Switzerland

³Romanian National Agency for Scientific Research

⁴Faculty of Physics, University of Bucharest, RO

⁵JINR, FLNR, Dept of Actinide Research, Dubna, RF

Goal and objectives

The fission process induced by gamma quanta up to 25 MeV energy on ²³⁸U was analyzed;

Experimental observables as cross sections, fragments mass distribution yields of some nuclides of interest and average prompt neutrons multiplicity characterizing ²³⁸U photofission were theoretically evaluated by using TALYS-1.9 software;

Theoretical evaluations of isomer ratios using Talys possibilities supplied by own computer codes as well as experimental isomer ratios obtained at MT - 25 Microtron;

This study represents a research proposal for photofission investigations and isotopes production at the new neutron source IREN, from FLNP - JINR Dubna

Fundamental research applications

- Photofission investigation of the configuration of fissionable system near scission point. It gives
 informations on: measurements of anisotropy, emitted gamma rays, fission products ground
 states
- Isomer Ratios (IR) →spin distribution, dependence of level density on angular momentum, probabilities of radiation transitions between the levels

Applicative researches

- Photofission important for transmutation and nuclear energy projects, new generation nuclear reactors
- Isotopes and Isomers productions for a wide range of applications in medicine, electronics, engineering

OUTLINE

INTRODUCTION

ELEMENTS OF THEORY. TALYS

RESULTS AND DISCUSSION

CONCLUSIONS

Talys codes and elements of theory. I

Codes for nuclear reaction mechanisms and nuclear structure calculations Implemented compound, direct and pre-equilibrium processes Wide database of nuclear data - energy levels, density levels, spins, parity, optical potential parameters for many nuclei

Photofission

Cross section -> compound processes

Mass distribution of fission fragments – evaluated in the frame of Brosa model

Density levels – Constant temperature with Fermi gas model

Isomer ratio

- It was considered a Brehmstrahlung incident gamma source (described by Kramers relation)
- Yields for IR calculated using statistical approach based on the spins distribution (Huizenga approach)

Talys codes and elements of theory. II

Fission Cross Sections (XS) – Hauser – Feshbach Formalism

Fission XS for a given fission fragment (FF) mass

$$\sigma(A_{FF}) = \sum_{Z_{FS}, A_{FS}, E_x} \sigma_F(Z_{FS}, A_{FS}, E_x) Y(A_{FF}; Z_{FS}, A_{FS}, E_x)$$

 A_{FF} = FF mass; $\sigma_F(Z_{FS}, A_{FS}, E_x)$ = cross section of fissionable system (FS) Y (A_{FF} ; Z_{FS} , A_{FS} , E_x) = relative yield of FF with mass A_{FF} coming from a FS with mass A_{FS} and charge Z_{FS}

 Z_{FS} , A_{FS} = charge and mass of FS; E_x = excitation energy

XS Production of FF with given mass (A_{FF}) and charge (Z_{FF})

$$\sigma_{prod}(Z_{FF}, A_{FF}) = \sum_{Z_{FS}, A_{FS}, E_x} \sigma_F(Z_{FS}, A_{FS}, E_x) Y(A_{FF}; Z_{FS}, A_{FS}, E_x) Y(Z_{FF}; A_{FF}, Z_{FS}, A_{FS}, E_x)$$

 $Y(Z_{FF}; A_{FF}, Z_{FS}, A_{FS}, E_x) = \text{relative yield of FF with charge } Z_{FF} \text{ and mass } A_{FF} \text{ coming from a FS with mass } A_{FS} \text{ and charge } Z_{FS}$

Talys codes and elements of theory. III

FF mass distribution

$$Y(A_{FF}; Z_{FS}, A_{FS}, E_x) = \sum_{FM = SL, STI, STII} W_{FM}(Z_{FS}, A_{FS}, E_x) Y_{FM}(A_{FF}; Z_{FS}, A_{FS}, E_x)$$

 W_{FM} (Z_{FS} , A_{FS} , E_x) = weight of fission mode (FM); Y_{FM} (A_{FF} ; Z_{FS} , A_{FS} , E_x) = mass distribution; FM = SL = superlong; STI, II = standard I, II

FM weight

$$W_{CFM}(Z_{FS}, A_{FS}, E_X) = \frac{T_{f,CFM}^B}{T_{SL,CFM}^B + T_{STI,CFM}^B + T_{STII,CFM}^B}$$

CFM = SL, STI, STII; $T_{f, CFM}$ = transmission coefficient (Hill – Wheeler); B = second barrier

M. C. Duijvestijn, A. J. Koning, and F. -J. Hambsch, Phys. Rev. C 64, 014607 (2001)
A. J. Koning, S. Hilaire and M. C. Duijvestijn, TALYS-1.0., Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, editors
O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, EDP Sciences (2008) 211-214

Isomer ratio

Isomer Ratio

$$R = \frac{Y_m}{Y_g} = \frac{\int\limits_{E_{th}}^{E_m} N_0 \phi(E_{\gamma}) \sigma_m(E_{\gamma}) dE_{\gamma}}{\int\limits_{E_{th}}^{E_m} N_0 \phi(E_{\gamma}) \sigma_g(E_{\gamma}) dE_{\gamma}}$$

 Y_m, Y_g = Yields of isomer and ground states

 E_{th}, E_m = Threshold maximal energy

Incident Flux - Kramers Relation

$$\phi(E_{\gamma}) \sim I_c = i_b Z(E_0 - E_{\gamma}) E_{\gamma}^{-1}$$

 I_c = intensity of gamma quanta

 i_b = electrons beam current

 E_0 = energy of accelerated electrons

Z = charge of stopping element

 $\phi(E_{\gamma})$ = Incident gamma flux

 N_0 = Number of target nuclei

IR in fission

Yields of isomer and ground states are obtained using statistical approach proposed by Huizenga Yields are proportional with the spin distribution of isomer and ground states

Spin Distribution

$$P(J) \sim (2J+1)Exp \frac{-J(J+1)}{2(\sigma+\lambda)^2}$$
 $J = spin$
 $\sigma, \lambda = parameters$

J. R. Huizenga, R. Vandenbosh, Phys. Rev. 120 (1960) 1305

J. R. Huizenga, R. Vandenbosh, Phys. Rev. **120** (1960) 1313

XS. Theory

XS Talys calculation

²³⁸U – photofission

Other produced fissionable nuclei are like ^{237, 236, 235}U, ²³³Th etc

$$1 -> 2 + 3 + 4 + \dots$$

Curve 1 represents the sum of contribution of all fissionable nuclei obtained in processes like (γ,n) , $(\gamma,2n)$, $(\gamma,3n)$, ...

Fission of ²³⁵U, ²³³Th are neglected

Exclusive XS of ²³⁸U photofission – typical shape for photon induced reaction in the GDR with 2 maximum characteristics for deformed nuclei

XS. Theory + Exp.

Experimental Data

- taken from EXFOR
- Talys standard input
- data are described satisfactory
- shapes of experimental and theoretical data almost the same
- high energy part well described
- lower than 15-18 MeV there are differences

Possible explanations

- fission of some products are not counted
- need to vary the Talys input parameters

Mass distribution of fission fragments. I

Mass Distribution

- Brosa Model
- asymmetric
- Asymmetry slowly decreases with energy

Mass distribution of fission fragments. II. Theory + Exp

Mass distribution

Calculated with Talys before neutron emission Compared with experimental values obtained for 8 MeV Brehmstrahlung source

Calculated neutron emission

Promt Neutron Multiplicity Distribution (PNMD)

Average Prompt Neutron Multiplicity as Function of Mass and Prompt Neutron Multiplicity Distribution evaluated by Talys for different energies

Prompt neutron emission is increasing with energy

Measurements of fission products

U photofission at the compact electron accelerator – the MT-25 microtron (FLNR, JINR). The accelerated electrons are extracted from the microtron to a stopping target to produce gammarays or are directed into an uranium-beryllium converter to produce neutrons. The uranium-beryllium converter is placed into the middle of a graphite cube with a 120 cm side, which is the main neutron moderator. The photofission of ²³⁸U sample induced by bremsstrahlungs in Giant Dipole Resonance Region of the MT-25 Microtron was performed. The maximum electron energy was 25 MeV.

MT-25 Scheme

1-system of high frequency;

2-wave channel;

3- ferrite isolator;

4-resonator;

5- vacuum system;

6- magnet;

7-vacuum camera

8-orbits of accelerated

electrons;

9-exit of electron beam;

10-magnet, focusing electron beam;

11- brake target

Measurements of fission products

Some of photofission fragments: ¹³⁰Sb, ¹³²Sb, ¹³⁵Xe, ¹³⁴I,...

Isomer and ground levels of ¹³⁵Xe

Experimental ^{135g,m}Xe spectra

Isotopes production

Talys Evaluation

Evaluations of production of isotopes ¹³⁰Sb, ¹³²Sb, ¹³⁴I before (1) and after (2) neutrons emissions are obtained with standard input For other isotopes like ¹³⁵Xe it is necessary to increase the precision of XS calculations

Isomer ratios. Theory + exp.

Properties of some isotopes

Elem.	Ground (g)		Isomer (m)	
	\mathbf{J}^{Π}	$ au_{ m g}$	\mathbf{J}^{Π}	$\tau_{ m m}$
¹³⁵ Xe	$(3/2)^{+}$	9.14 h	(11/2)	15.29 m
¹³⁰ Sb	8-	39.5 m	5+	6.3 m

Isomer	$\mathbf{E}_{\gamma}[\mathbf{MeV}]$	R ^{exp}	R ^{Talys}
¹³⁵ Xe	16	0.22 ± 0.03	0.43 ± 0.15
¹³⁰ Sb	16	0.86 ± 0.15	0.95 ± 0.18
¹³⁴ I	16	0.67 ± 0.13	-
¹³² Sb	16	0.79 ± 0.13	-

¹³⁵Xe diff between theory and exp

¹³⁰Sb – in good agreement

¹³⁴I, ¹³²Sb – future tasks

CONCLUSIONS

- Isotopes and isomers production in photofission of ²³⁸U was investigated
- Cross sections, mass distributions, dependence of average prompt neutron multiplicity on fission fragment mass, isotopes production and isomer ratio were obtained for incident neutrons energy starting from 6 up to 25 MeV
- Calculations were compared with existing experimental data
- Cross section data need improvements (new data, new measurements)
- Evaluations were realized with Talys an efficient tool of experimental data analysis

Future plans

- New experimental data from photofission of ²³⁸U are planned as necessary
- Project proposals for experiment at FLNP, FLNR JINR Dubna basic facilities
- Improvement of theoretical evaluations and computer simulations

