

# Charge Symmetry Breaking in strange nuclei

Elena Botta

Torino University and INFN- Sezione di Torino

# Summary

- Introduction
- Present knowledge on CSB effects in s, p-shell  $\Lambda$ -hypernuclei
- Recent results and analyses
- Conclusions

# Introduction

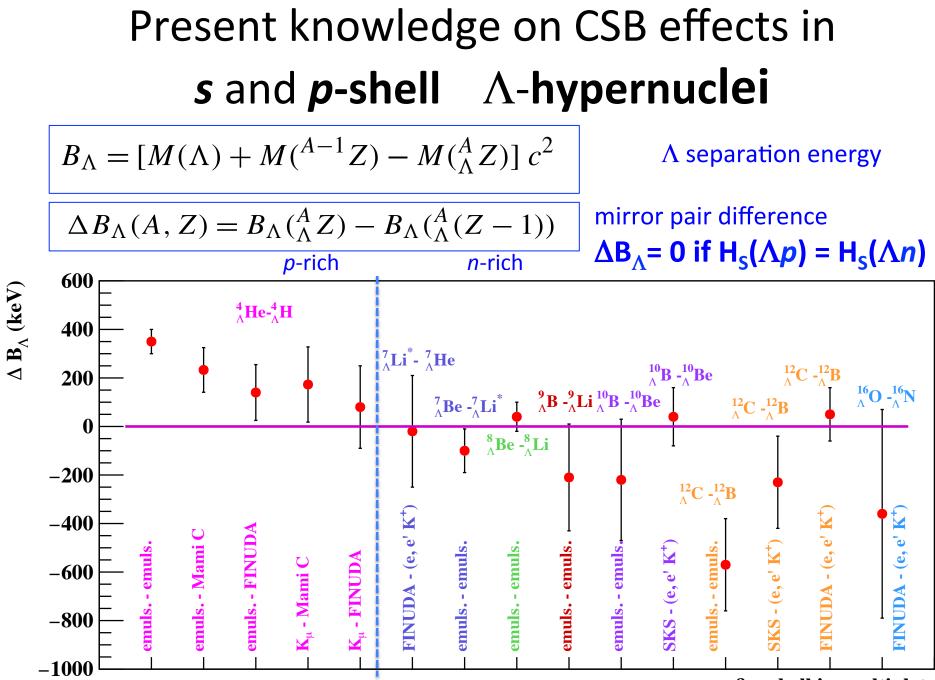
- Charge Independence: [H<sub>s</sub>, T] = 0
  - isospin invariance strong interaction forces do not distinguish between n and p:

 $H_{s}(pp, T_{3}=+1) = H_{s}(pn, T_{3}=0) = H_{s}(nn, T_{3}=-1)$ 

after removing e.m. effects

- only approximate symmetries (u&d masses difference, qq e.m. interactions  $\rightarrow p \& n$  masses, meson mixing  $\rho^0$ - $\omega$ )
- Charge Symmetry:  $P_{CS} = e^{i\pi T_2}$   $[H_S, P_{CS}] = 0$  $H_S(pp, T_3=+1) = H_S(nn, T_3=-1)$  T=1  $H_S(\Lambda p, T_3=+1/2) = H_S(\Lambda n, T_3=-1/2)$  T=1/2

# Introduction


#### Charge Symmetry Breaking (CSB) effects

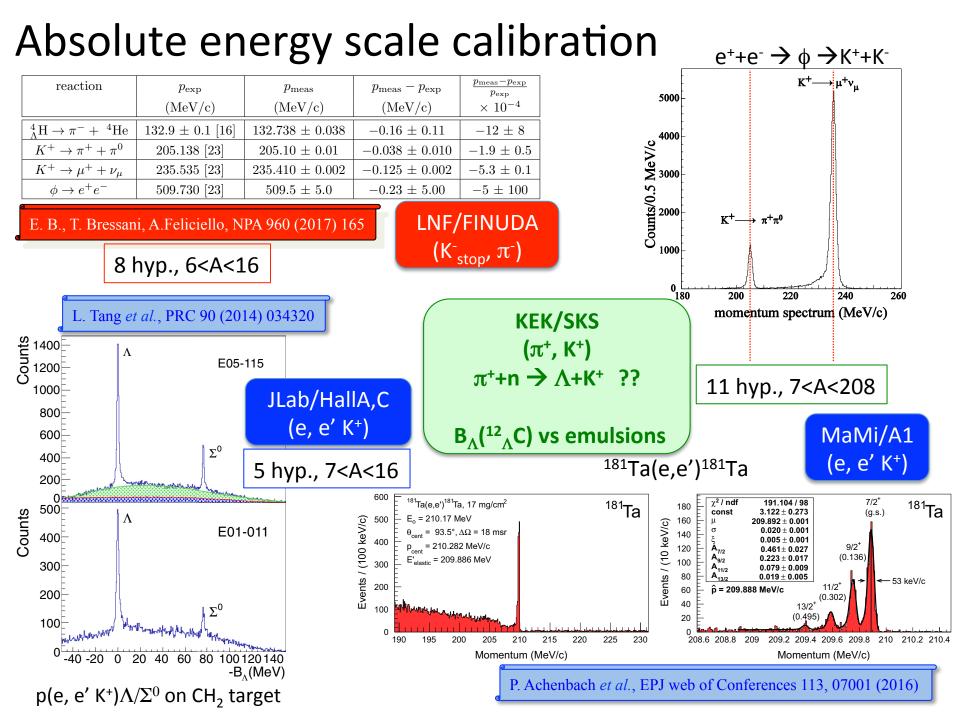
#### mirror nuclei binding energies

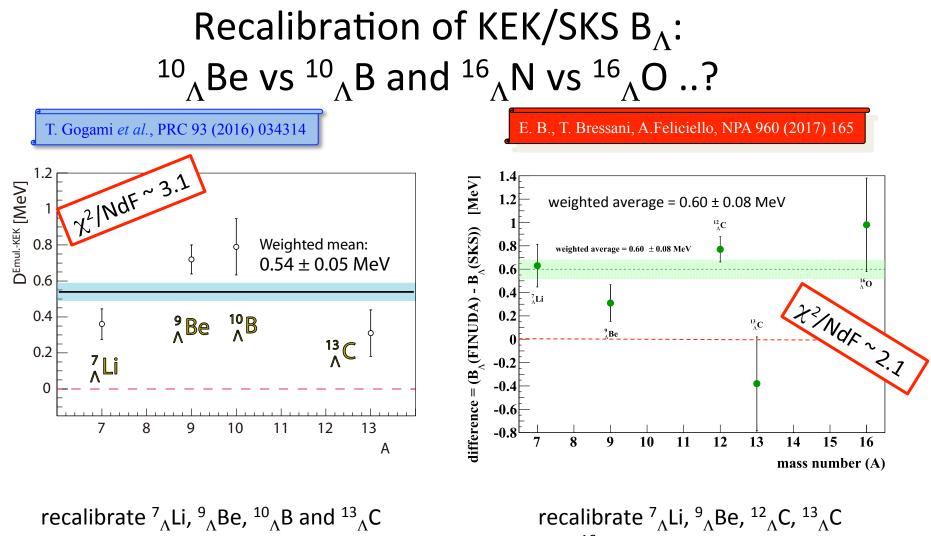
(generalization of the *n*-*p* mass difference)

- $\Delta B = B(^{3}H)-B(^{3}He) = 746 \text{ keV} \rightarrow ~71 \text{ keV} \text{ CSB}$
- Nolen-Schiffer anomaly: *n*-rich nuclei more deeply bound than *p*-rich nuclei (~5%: u,d quark mass difference)

#### mirror hypernuclei $\Lambda$ separation energies H<sub>S</sub>( $\Lambda p$ ) = H<sub>S</sub>( $\Lambda n$ ) $\rightarrow$ contribution to total B




s&p-shell isomultiplets


#### $\Lambda$ -hypernuclei production

 emulsion experiments: hyperfragments produced on heavy components of the emulsion (Ag, Br) by K<sup>-</sup> (stopped and in-flight) *p*- and *n*-rich hypernuclei

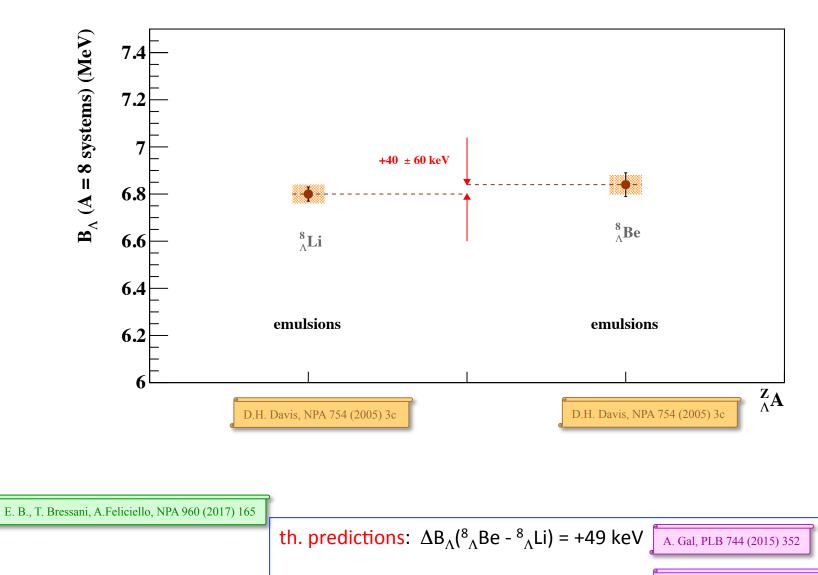
- magnetic spectrometers with dedicated reactions:
  - $\begin{array}{ccc} -(\mathsf{K}^{-},\pi^{-}) & \mathsf{K}^{-}+n \rightarrow \Lambda + \pi^{-} & \text{on nuclei} \\ -(\pi^{+},\mathsf{K}^{+}) & \pi^{+}+n \rightarrow \Lambda + \mathsf{K}^{+} & \text{on nuclei} \end{array} \right] \begin{array}{c} p\text{-rich} \\ p\text{-prich} \\ p\text{-prich}$

CSB effects: results from different experiments absolute energy scale calibration



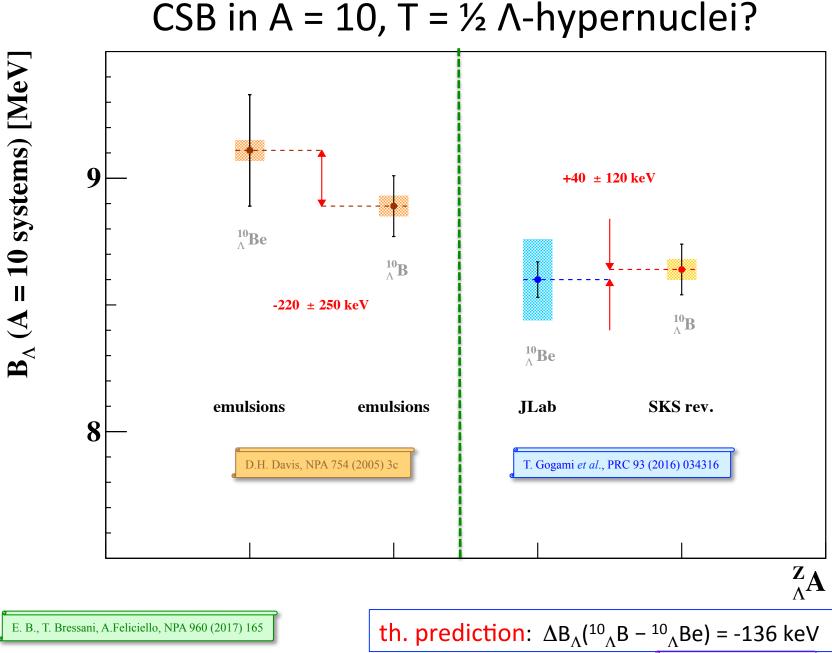



to corresponding emulsions data

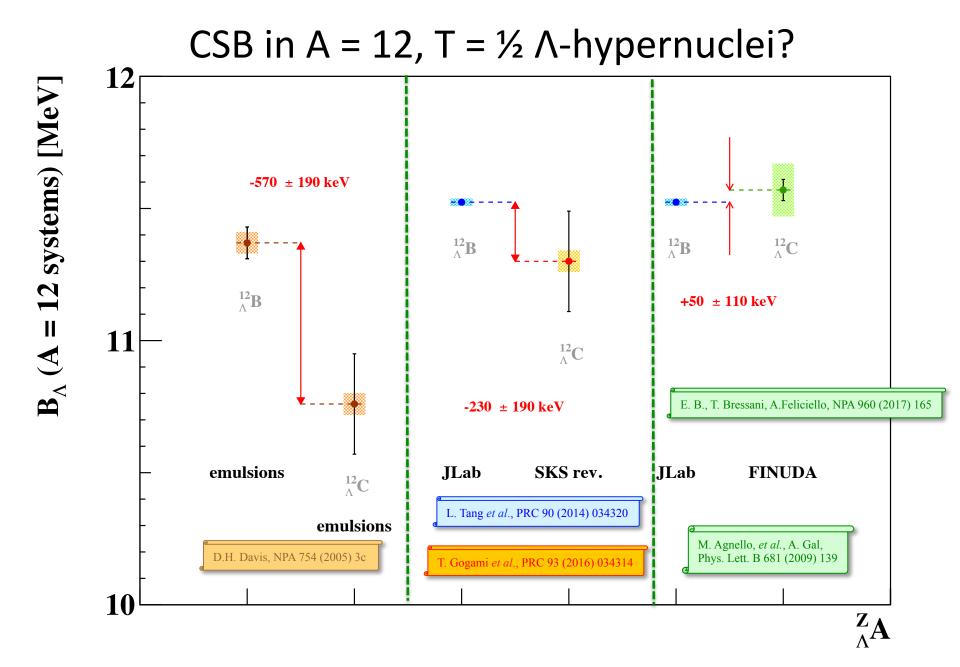

and <sup>16</sup> ,O to FINUDA results

F. Cusanno et al., Phys. Rev. Lett. 103 (2009) 202501; <sup>16</sup> N/<sup>16</sup> O from A. Gal et al, Rev. Mod. Phys. 88 (2016) 035004: correction of +600 keV to SKS data

### CSB in A = 7, T = 1 $\Lambda$ -hypernuclei?

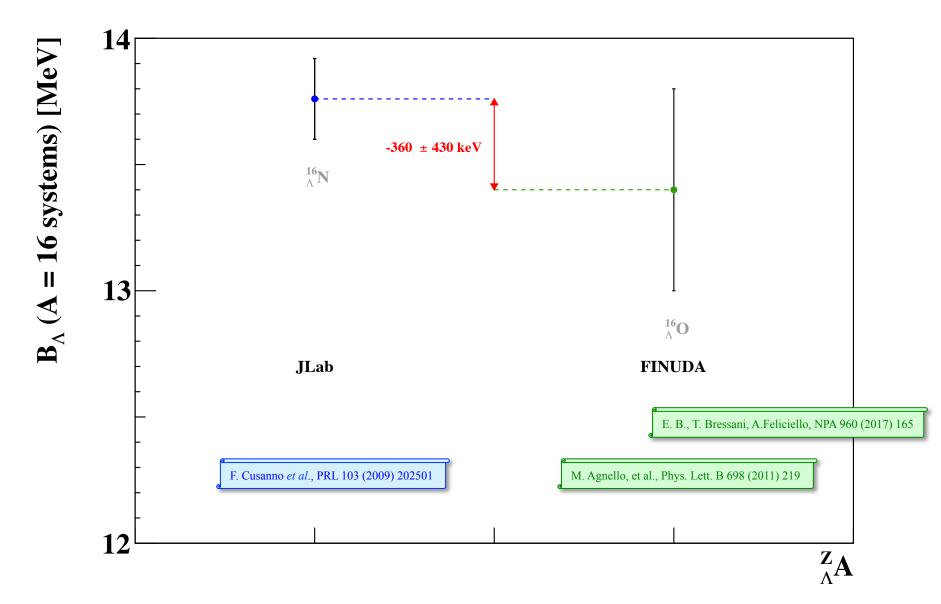



CSB in A = 8, T = 
$$\frac{1}{2}$$
 A-hypernuclei?




= +160 keV

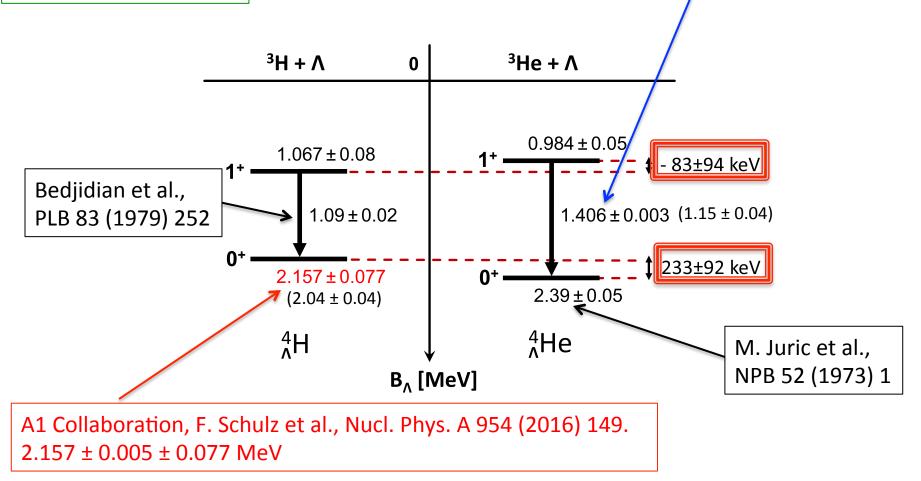
E. Hiyama et al., PRC 80 (2009) 054321



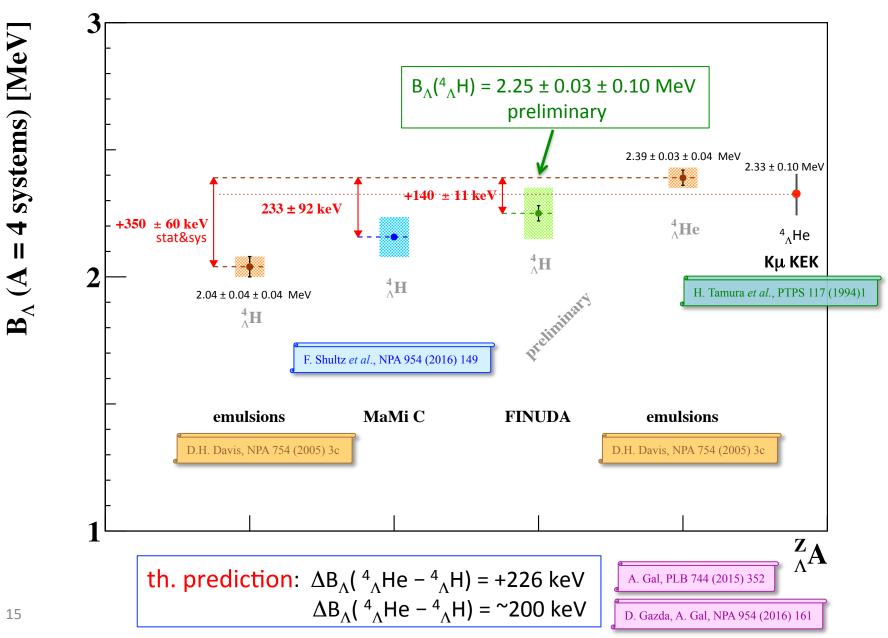

A. Gal, PLB 744 (2015) 352



#### 

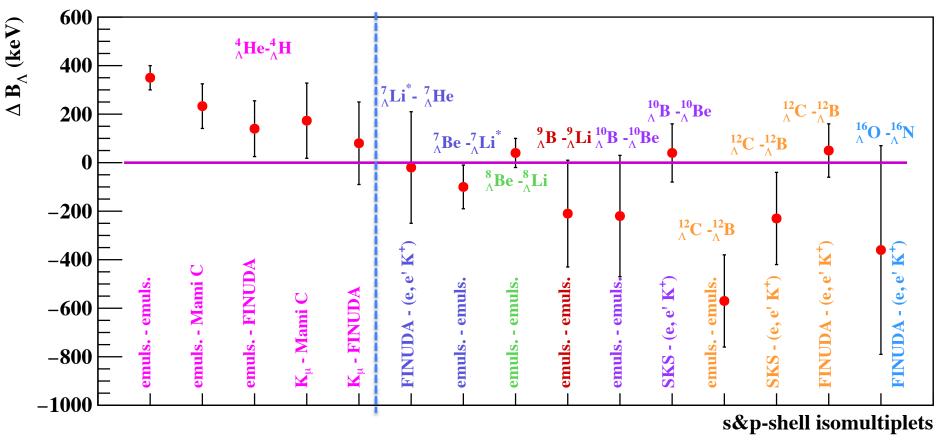

CSB in A = 16, T =  $\frac{1}{2}$  A-hypernuclei?




# CSB in A = 4, T = $\frac{1}{2}$ A-hypernuclei

emulsions and old  $\gamma$  measurements:  $\Delta B_{\Lambda}(0+) = 350 \pm 60 \text{ keV}$  $\Delta B_{\Lambda}(1+) = 290 \pm 60 \text{ keV}$ 

T.O. Yamamoto et al., Phys. Rev. Lett. 115 (2015) 222501 1406 ± 2 ± 2 keV strong CSB dependence on spin




CSB in A = 4, T =  $\frac{1}{2}$  A-hypernuclei?



15

# Conclusions



• A=4 system:

measure with precision  ${}^{4}_{\Lambda}$ He g.s. and  ${}^{4}_{\Lambda}$ H  $\gamma(1^{+}\rightarrow 0^{+})$  transition

- A=7, <sup>7</sup><sub>Λ</sub>Be (emulsions-counters)
- A=16 system, increase statistics

# backup

# Theoretical calculations

4 body cluster model ( $\Lambda$ + $\alpha$ +N+N) for A=7, 8

4-body potential given by the sum of two-body interactions that reproduce the observed properties of any subsystems composed of  $\alpha N$ ,  $\alpha \Lambda$ ,  $\alpha NN$  and  $\alpha \Lambda N$ . The  $\Lambda N$  interaction is adjusted so as to reproduce the 0<sup>+</sup> - 1<sup>+</sup> splitting of in  ${}^{4}_{\Lambda}$ H. Phenomenological  $\Lambda N$  CSB interaction: central force only with a one-range Gaussian form which includes spin-independent and spin-spin parts.

Dalitz and von Hippel  $\Lambda$ - $\Sigma$  mixing mechanism in SU(3) to produce CSB contributions from OPE interactions in hypernuclei. G-matrix YN effective inter. derived from NSC97 ~1%  $\Sigma$  admixture percentages in 0+; 1+ admixture considerably weaker . A=4 then 7, 8, 9, 10

Gazda-Gal: ab-initio No Core Shell Model calculation based on Bonn-Julich LO chiral EFT for YN and NN (N3LO), NNN (N2LO) interactions. CSB mechanism:  $\Lambda$ - $\Sigma$  mixing ( $\Lambda$ N- $\Sigma$ N coupling ), OPE exchange interactions: CSB is driven by relatively long-range OPE. A=4

E. Hiyama et al., PRC 80 (2009) 054321

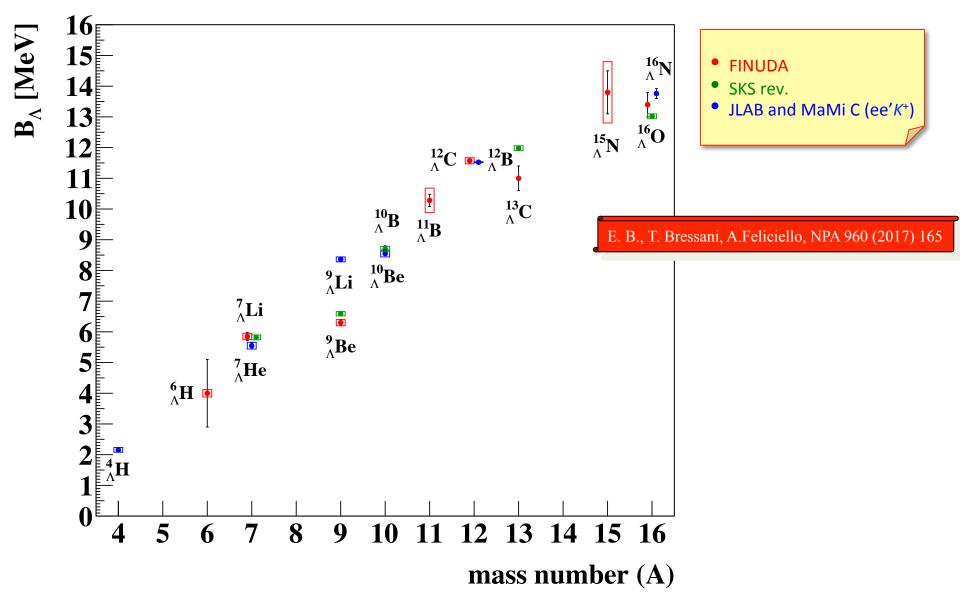
A. Gal, PLB 744 (2015) 352

D. Gazda, A. Gal, NPA 954 (2016) 161

#### Revised CSB effect in *p*-shell $\Lambda$ -hypernuclei

| multiplet pair                                              | $\Delta B_{\Lambda}(A,Z) \; (\text{keV})$ | experimental sources  | Reference |
|-------------------------------------------------------------|-------------------------------------------|-----------------------|-----------|
| $^{7}_{\Lambda}\mathrm{Be} - ^{7}_{\Lambda}\mathrm{Li}^{*}$ | $-100 \pm 90$                             | emuls. – emuls.       | [2, 4]    |
| $^{7}_{\Lambda}\mathrm{Li}^{*} - ^{7}_{\Lambda}\mathrm{He}$ | $-20 \pm 230$                             | $FINUDA - (e, e'K^+)$ | [t.w.]    |
| $^{8}_{\Lambda}\mathrm{Be} - ^{8}_{\Lambda}\mathrm{Li}$     | $+40 \pm 60$                              | emuls. $-$ emuls.     | [2]       |
| $^{10}_{\Lambda}\mathrm{B} - ^{10}_{\Lambda}\mathrm{Be}$    | $-220 \pm 250$                            | emuls. $-$ emuls.     | [2]       |
|                                                             | $+40 \pm 120$                             | $SKS - (e, e', K^+)$  | [13]      |
| $^{12}_{\Lambda}\mathrm{C} - ^{12}_{\Lambda}\mathrm{B}$     | $-570 \pm 190$                            | emuls. $-$ emuls.     | [2]       |
|                                                             | $-230 \pm 190$                            | $SKS - (e, e', K^+)$  | [13]      |
|                                                             | $+50 \pm 110$                             | FINUDA $- (e, e'K^+)$ | [t.w.]    |
| $^{16}_{\Lambda}\mathrm{O} - ^{16}_{\Lambda}\mathrm{N}$     | $-360 \pm 430$                            | $FINUDA - (e, e'K^+)$ | [t.w.]    |

[2] D.H. Davis, Nucl. Phys. A 754 (2005) 3c.


[4] H. Tamura et al., Phys. Rev. Lett. 84 (2000) 5963.

[13] T. Gogami et al., Phys. Rev. C 93 (2016) 034314

[t.w.] E. B., T. Bressani, A.Feliciello, NPA 960 (2017) 165

 $\Delta B_{\Lambda}({}^{9}_{\Lambda}B - {}^{9}_{\Lambda}Li) = -210 \pm 220 \text{ keV from emulsions } (\Delta Z=2)$ 

# s, p-shell hypernuclei $B_{\Lambda}$ from counter experiments with absolute energy scale calibration



|                              | emulsions (MeV)                   | $\frac{(\pi^+, K^+) \text{ (MeV)}}{\text{KEK-SKS [5]}}$ | $(\pi^+, K^+)$ (MeV)<br>KEK-SKS revised [t.w.] | $(K_{stop}^{-}, \pi^{-})$ (MeV)<br>DA $\Phi$ NE-FINUDA                                          | $(e, e'K^+)$ (MeV)<br>JLab, MaMi  |
|------------------------------|-----------------------------------|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| $^{3}_{\Lambda}\mathrm{H}$   | $0.13 \pm 0.05 \pm 0.04$ [1, 2]   |                                                         |                                                |                                                                                                 |                                   |
| $^4_{\Lambda}{ m H}$         | $2.04{\pm}0.04{\pm}0.04$ [1, 2]   |                                                         |                                                |                                                                                                 | $2.157 \pm 0.005 \pm 0.077$ [16]  |
| $^{4}_{\Lambda}$ He          | $2.39 \pm 0.03 \pm 0.04$ [1, 2]   |                                                         |                                                |                                                                                                 |                                   |
| $^{5}_{\Lambda}$ He          | $3.12 \pm 0.02 \pm 0.04 [1, 2]$   |                                                         |                                                |                                                                                                 |                                   |
| $^{6}_{\Lambda}$ H           |                                   |                                                         |                                                | $4.0\pm1.1$ [20, 28]                                                                            |                                   |
| $^{6}_{\Lambda}$ He          | 4.25±0.10 [1]                     |                                                         |                                                |                                                                                                 |                                   |
|                              | $4.18 \pm 0.10 \pm 0.04$ [2]      |                                                         |                                                |                                                                                                 |                                   |
| $^{7}_{\Lambda}$ He          |                                   |                                                         |                                                |                                                                                                 | $5.55 \pm 0.10 \pm 0.11$ [11]     |
| ΛLi                          | $5.58 \pm 0.03 \pm 0.04$ [1, 2]   | $5.22 \pm 0.08 \pm 0.36$                                | $5.82 \pm 0.08 \pm 0.08$                       | $5.85 \pm 0.13 \pm 0.10$ [19],[t.w.]<br>$5.8 \pm 0.4$ [21]                                      |                                   |
| $^{7}_{\Lambda}$ Li*         | $5.26 {\pm} 0.03 {\pm} 0.04$      | $4.90{\pm}0.08{\pm}0.36$                                | $5.50{\pm}0.08{\pm}0.08$                       | $5.53 \pm 0.13 \pm 0.10$                                                                        |                                   |
| [4]                          |                                   |                                                         |                                                | $5.48 {\pm} 0.40$                                                                               |                                   |
| $^{7}_{\Lambda}\mathrm{Be}$  | $5.16 \pm 0.08 \pm 0.04$ [1, 2]   | <u>A</u>                                                |                                                |                                                                                                 |                                   |
| $^{8}_{\Lambda}$ He          | $7.16 \pm 0.70 \pm 0.04$ [1, 2]   | E R T                                                   | Bressani, A.Feliciello,                        | NIDA 960 (2017) 165                                                                             |                                   |
| $^{8}_{\Lambda}$ Li          | 6.80±0.03±0.04 [1, 2]             | L. D., 1.                                               | Diessaiii, A.Fenereno,                         | NIA 900 (2017) 105                                                                              |                                   |
| $^{8}_{\Lambda}\mathrm{Be}$  | $6.84 \pm 0.05 \pm 0.04$ [1, 2]   |                                                         |                                                |                                                                                                 |                                   |
| $^{9}_{\Lambda}$ Li          | 8.53±0.15 [1]                     |                                                         |                                                |                                                                                                 | 8.36±0.08±0.08 [12]               |
|                              | 8.51±0.12±0.04 [2]                |                                                         |                                                |                                                                                                 |                                   |
| $^{9}_{\Lambda}\mathrm{Be}$  | $6.71 \pm 0.04 \pm 0.04$ [1, 2]   | $5.99 {\pm} 0.07 {\pm} 0.36$                            | $6.59 {\pm} 0.07 {\pm} 0.08$                   | $\begin{array}{c} 6.30{\pm}0.10{\pm}0.10  [19], [\text{t.w.}] \\ 6.2{\pm}0.4  [21] \end{array}$ |                                   |
| $^{9}_{\Lambda}\mathrm{B}$   | 7.88±0.15 [1]                     |                                                         |                                                |                                                                                                 |                                   |
|                              | $8.29 \pm 0.18 \pm 0.04$ [2]      |                                                         |                                                |                                                                                                 |                                   |
| $^{10}_{\Lambda}\mathrm{Be}$ | 9.30±0.26 [1]                     |                                                         |                                                |                                                                                                 | 8.60±0.07±0.16 [13]               |
|                              | $9.11 {\pm} 0.22 {\pm} 0.04$ [2]  |                                                         |                                                |                                                                                                 |                                   |
| $^{10}_{\Lambda}{ m B}$      | 8.89±0.12±0.04 [1, 2]             | $8.1 {\pm} 0.1 {\pm} 0.5$                               | $8.7{\pm}0.1{\pm}0.08$                         |                                                                                                 |                                   |
| $^{11}_{\Lambda}\mathrm{B}$  | $10.24 \pm 0.05 \pm 0.04$ [1, 2]  |                                                         |                                                | $10.28 \pm 0.2 \pm 0.4$ [t.w.]                                                                  |                                   |
| $^{12}_{\Lambda}\mathrm{B}$  | $11.37 \pm 0.06 \pm 0.04$ [1, 2]  |                                                         |                                                |                                                                                                 | $11.524 \pm 0.019 \pm 0.013$ [14] |
| $^{12}_{\Lambda}\mathrm{C}$  | $10.76 \pm 0.19 \pm 0.04$ [2]     | 10.80 fixed                                             |                                                | $11.57 \pm 0.04 \pm 0.10$ [19],[t.w.]                                                           |                                   |
|                              |                                   |                                                         |                                                | $10.94 \pm 0.06 \pm 0.50$ [18]                                                                  |                                   |
| $^{13}_{\Lambda}\mathrm{C}$  | 11.22±0.08 [1]                    | $11.38 {\pm} 0.05 {\pm} 0.36$                           | $11.98{\pm}0.05{\pm}0.08$                      | 11.0±0.4 [21]                                                                                   |                                   |
|                              | $11.69 {\pm} 0.12 {\pm} 0.04$ [2] |                                                         |                                                |                                                                                                 |                                   |
| $^{14}_{\Lambda}\mathrm{C}$  | $12.17 \pm 0.33 \pm 0.04$ [2]     |                                                         |                                                |                                                                                                 |                                   |
| $^{15}_{\Lambda}{ m N}$      | $13.59 \pm 0.15 \pm 0.04$ [1, 2]  |                                                         |                                                | $13.8 \pm 0.7 \pm 1.0$ [t.w.]                                                                   |                                   |
| $^{16}_{\Lambda}\mathrm{N}$  |                                   |                                                         |                                                |                                                                                                 | $13.76 {\pm} 0.16$ [15]           |
| $^{16}_{\Lambda}\mathrm{O}$  |                                   | $12.42 {\pm} 0.05 {\pm} 0.36$                           | $13.02{\pm}0.05{\pm}0.08$                      | $13.4 \pm 0.4$ [21]                                                                             |                                   |

- [1] M. Jurič, et al., Nucl. Phys. B 52 (1973) 1.
- [2] D.H. Davis, Nucl. Phys. A 754 (2005) 3c.
- [3] S.N. Nakamura, et al., Phys. Rev. Lett. 110 (2013) 012502.
- [4] H. Tamura, et al., Phys. Rev. Lett. 84 (2000) 5693.
- [5] O. Hashimoto, T. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.
- [6] E. Botta, T. Bressani, G. Garbarino, Eur. Phys. J. A 48 (2012) 41.
- [7] A. Feliciello, T. Nagae, Rep. Prog. Phys. 78 (2015) 006301.
- [8] A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88 (2016) 035004.
- [9] T. Hasegawa, et al., Phys. Rev. C 53 (1996) 1210.
- [10] H. Hotchi, et al., Phys. Rev. C 64 (2001) 044302.
- [11] T. Gogami, et al., Phys. Rev. C 94 (2016) 021302.
- [12] G.M. Urciuoli, et al., Phys. Rev. C 91 (2015) 034308.
- [13] T. Gogami, et al., Phys. Rev. C 93 (2016) 034314.
- [14] L. Tang, et al., Phys. Rev. C 90 (2014) 034320.
- [15] F. Cusanno, et al., Phys. Rev. Lett. 103 (2009) 202501.
- [16] A1 Collaboration, F. Schulz, et al., Nucl. Phys. A 954 (2016) 149.
- [17] A. Gal, Phys. Lett. B 744 (2015) 352.
- [18] FINUDA Collaboration, M. Agnello, et al., Phys. Lett. B 622 (2005) 35.
- E.B. T. Bressani, A. Feliciello, NPA 960 R017165 [19] FINUDA Collaboration, M. Agnello, et al., A. Gal, Phys. Lett. B 681 (2009) 139.
- [20] M. Agnello, et al., Nucl. Phys. A 881 (2012) 269.
- [21] M. Agnello, et al., Phys. Lett. B 698 (2011) 219.