

Heavy-flavour production measurements in heavy-ion collisions with ALICE at the LHC

A. Festanti CERN On behalf of the ALICE Collaboration

- Early production in hard-scattering processes with high $Q^2(m_c, m_b >> T_{QGP})$
- Production cross section calculable with pQCD (m_c , $m_b >> \Lambda_{QCD}$)
- Experience the entire evolution of the medium
- Strongly interacting with QGP

- Early production in hard-scattering processes with high $Q^2(m_c, m_b \gg T_{QGP})$
- Production cross section calculable with pQCD (m_c , $m_b >> \Lambda_{QCD}$)
- Experience the entire evolution of the medium
- Strongly interacting with QGP
 - energy loss via radiative and collisional processes
 - path length and medium density
 - color charge (Casimir factor)
 - quark mass (dead cone effect)

Observable: nuclear modification factor

$$R_{AA}(p_{T}) = rac{\mathrm{d}N_{AA}/\mathrm{d}p_{T}}{\langle T_{AA}
angle \ \mathrm{d}\sigma_{\mathrm{pp}}/\mathrm{d}p_{T}}$$

No modification $\rightarrow R_{AA}=1$ Energy loss $\rightarrow R_{AA}<1$ at high p_T

 $\Delta E_{\rm q} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}$

- Early production in hard-scattering processes with high $Q^2(m_c, m_b \gg T_{QGP})$
- Production cross section calculable with pQCD (m_c , $m_b >> \Lambda_{QCD}$)
- Experience the entire evolution of the medium
- Strongly interacting with QGP
 - energy loss via radiative and collisional processes
 - medium modification to heavyflavour hadron formation
 - hadronisation via quark coalescence

EuNPC 2018

- Early production in hard-scattering processes with high $Q^2(m_c, m_b \gg T_{QGP})$
- Production cross section calculable with pQCD (m_c , $m_b >> \Lambda_{QCD}$)
- Experience the entire evolution of the medium
- Strongly interacting with QGP
 - energy loss via radiative and collisional processes
 - medium modification to heavyflavour hadron formation
 - participation in the collective motion
 - azimuthal anisotropy of produced particles

Observable: elliptic flow *v*₂

A. Festanti

$$v_2 = \langle \cos 2(\varphi - \psi_2) \rangle$$

Second coefficient of the Fourier expansion of the azimuthal distribution of D w.r.t. to reaction plane angle (Ψ_{RP}) EuNPC 2018

2

- Early production in hard-scattering processes with high $Q^2(m_c, m_b \gg T_{QGP})$
- Production cross section calculable with pQCD (m_c , $m_b >> \Lambda_{QCD}$)
- Experience the entire evolution of the medium
- Strongly interacting with QGP
 - energy loss via radiative and collisional processes
 - medium modification to heavyflavour hadron formation
 - participation in the collective motion
- Cold Nuclear Matter (CNM) effects (not due to QGP formation) can modify heavy-flavour production in nuclear collisions: studied in p-Pb collisions

Observable: nuclear modification factor

$$\frac{R_{\rm pPb}(p_{\rm T})}{A \times d\sigma_{\rm pp}/dp_{\rm T}}$$

ALICE Experiment

D-meson production in p-Pb collisions ۹₄1.8 ۳

p–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV

ALICE Preliminary

Prompt D mesons, -0.96<*y*_{cms}<0.04

- **D-meson** *R*_{pPb} consistent with **unity** $oldsymbol{O}$ within uncertainties in minimum bias p-Pb collisions
- **D**_s *R*_{pPb} compatible with non $oldsymbol{O}$ strange D-meson R_{pPb}

- Models including $oldsymbol{O}$
 - CNM effects only are compatible with data
 - Incoherent multiple scattering describes data for $p_T > 5 \text{ GeV}/c$
 - Including QGP formation describe data at low/intermediate p_{T} **EuNPC 2018**

Multiplicity-differential studies in p-Pb collisions

ALI-PREL-136823

- Hint of central-to-peripheral ratio larger than 1 in $3 < p_T < 8$ GeV/*c* for D mesons (1.5 σ significance)
- Similar trend as observed for charged particles
- $v_2(c,b \rightarrow e) > 0$ with 5.1 σ significance in 1.5 < $p_T^e < 4$ GeV/c
- Qualitatively similar effect as observed for charged particles and inclusive muons

EuNPC 2018

Collective effects in p-Pb collisions? Initial- or final-state effects?

Λ_c/D^0 in pp and p-Pb collisions

- Λ_c/D^0 compatible within uncertainties in pp and p-Pb collisions
- Λ_c/D⁰ higher than expectations from MC (PYTHIA8 with enhanced colour reconnection is closer to data)
- Decreasing trend of Λ_c/D^0 for $p_T > 4$ GeV/*c* is observed in p-Pb collisions
 - Similar trend as a function of p_T as the light-flavour baryon-tomeson ratio

$\Lambda_{\rm C} R_{\rm PPb}$

- $\Lambda_c R_{pPb}$ consistent with unity, D-meson R_{pPb} and models within uncertainties
 - CNM effects: POWHEG+PYTHIA with CT10NLO+EPS09 PDFs
 - Hot medium effects: POWLANG with "small-size" QGP formation + collisional energy loss

D-meson RAA

• Strong suppression at high p_T of non-strange D mesons in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV increasing with centrality

EuNPC 2018

- Evidence of strong charm quark energy loss in the medium
- Similar suppression at $\sqrt{s_{NN}} = 2.76$ TeV and $\sqrt{s_{NN}} = 5.02$ TeV
- A. Festanti
 Interplay between harder spectra and denser medium
 8

Heavy-flavour hadron decay electron RAA

- Strong suppression of heavy-flavour hadron decay electron R_{AA} at high p_T in central Pb-Pb collisions
- Nuclear modification factor measured in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV compatible with unity
- Similar suppression

 observed for muons from
 heavy-flavour hadron
 decays at forward rapidity

EuNPC 2018

Suppression in Pb-Pb collisions due to charm and beauty in-medium interaction

HF electrons, D-meson and charged-particle RAA

LI-PREL-147777

- Hint of smaller suppression of beautydecay electrons than that of heavy flavour hadron decay electron in central Pb-Pb collisions
- Expected from models implementing mass-dependent parton energy loss

- Similar D, π^{\pm} and ch.-particle R_{AA} for $p_T > 10$ GeV/c
- D-meson R_{AA} larger than that of π^{\pm} at low p_{T}
 - *N*_{part} vs *N*_{coll} scaling at low *p*_T, different
 fragmentation and initial spectra shapes,
 coalescence and radial flow to be considered
 in addition to mass and Casimir factor
 effects

D-tagged jets RAA

- First measurement of D-tagged jets in Pb-Pb collisions
- Strong suppression of the D⁰tagged jets in central Pb-Pb collisions
 - Hint of more suppression of low *p*_T D⁰-jets than inclusive jets at higher *p*_T
 - Similar to D-meson RAA
- D⁰-jets: more quark-seeded jets compared to inclusive jets
- Important to study the impact of collisional energy loss for heavyflavour jets

Heavy-flavour hadron decay electron and muon RAA in Xe-Xe

- Similar suppression of heavy-flavour hadron decay electron and muon R_{AA} measured in Xe-Xe collisions at $\sqrt{s_{NN}} =$ 5.44 TeV
- Comparison of Pb-Pb and Xe-Xe results at different multiplicities to probe pathlength dependence of energy loss

A. Festanti

ALI-PREL-152284

$D_s R_{AA}$ and D_s/D^0 ratio

 Hint of enhanced D_s production in comparison to non-strange D mesons in Pb-Pb collisions → expected from models

Coalescence + strangeness enhancement effect?

No evidence for a centrality dependence of the D⁰/D_s ratio within uncertainties
 A. Festanti

Λ_c production in Pb-Pb collisions

• **Hint** of larger $\Lambda_c R_{AA}$ in 0-80% than D-meson R_{AA} in 0-10%

Ordering of charm hadron R_{AA} is consistent with recombination expectations

EuNPC 2018

D-meson V₂

Positive D-meson v_2 in $2 < p_T < 10$ GeV/c

- Charm quark is sensitive to the medium collective flow
- First measurement of the D_s v₂
 - Compatible with that of non-strange D mesons
- Compatible D-meson v_2 at $\sqrt{s_{NN}} = 2.76$ TeV and $\sqrt{s} = 5.02$ TeV
- Similar D-meson and charged-pion v_2
- Hint of larger pion v₂ for p_T < 4 GeV/c
 EuNPC 2018

Comparison to models

- Models including charm quark recombination and elastic collisions in an expanding medium better describe both v₂ and R_{AA} at low p_T (LBT, MC@sHQ, PHSD, POWLANG)
- *R*_{AA} and *v*₂ together provide important constraints to models and help to extract information about medium properties
 - models that reasonably describe the data: $1.5 < 2\pi TD_s(T) < 7$ at $T_c \rightarrow \tau_{charm} = 3-14 \text{ fm/}c$

Summary

p-Pb collisions

- *R*_{pPb} compatible with unity and described by models including nPDFs
- **Hint of D-meson** $R_{CP} > 0$ at low p_T and **non-zero** v_2 for HFe in high multiplicity events \rightarrow Collective effects? Initial- or final-state effects?
- Λ_c/D^0 in pp and p-Pb higher than MC predictions

Pb-Pb collisions

- Strong R_{AA} suppression at high p_T in central collisons \rightarrow final-state effects
- D_s/D: hint of enhancement in Pb-Pb with respect to pp → coalescence + strangeness enhancement ?
- Λ_c/D^0 : hint of enhancement with respect to pp and p-Pb
- Positive D-meson $v_2 \rightarrow$ strong coupling of charm quark with the medium

Future goals

- Upgrades of ALICE and large statistics during LHC Run3-4
 - D-meson R_{AA} and v_2 with improved precision and extended p_T reach
 - Precise charm-baryon measurements
 - Access beauty-hadron measurements

EuNPC 2018

Event-shape engineering analysis

 Event eccentricity quantified by the second-harmonic reduced flow vector q₂

 $\langle q_2^2 \rangle \simeq 1 + \langle (M-1) \rangle \langle (v_2^2 + \delta_2) \rangle$ non-flow effects

- q_2 depends on multiplicity and strength of the flow
- Opportunity to study the coupling of c quarks to the bulk of light quarks by measuring the D-meson elliptic flow in events with different q₂ values

- Separation of D-meson v₂ in events with large and small q₂
- D-meson v₂ is correlated to light hadron flow and it is sensitive to event-by-event initial conditions fluctuations
- Non flow contributions not completely removed