Light Hypernuclei – A Testbed for Charge Symmetry Breaking

Patrick Achenbach U Mainz

Sept. 2018

If charge symmetry would be satisfied in nuclear systems ...

... protons would be heavier than neutrons because of electrostatic repulsion

- ... free protons would decay into neutrons
- ... big bang nucleosynthesis would have proceeded along different paths
- ... a fundamentally different universe would have been produced
- ... the Sun and the stars would have no slow-burning fuel

[C. J. Hogan, PRD 74, 123514 (2006)]

... the Sun would be dark by now and we would not be here in Bologna

Charge symmetry breaking has significant impact on all of us!

Manifestation of charge symmetry

Charge symmetry in light nuclei

Charge symmetry: strong force independent of nucleon isospin exchange $(F_{p-p} = F_{n-n})$

Charge symmetry breaking in nuclear two-body forces ...

... can be studied in mirror nuclei

... after correcting for electromagnetic effects of order 1 MeV

- ... is very small: only ~ 80 keV for ³H ³He: $\Delta B_{CSB}/B$ ~ 0.1 %
- ... can be calculated rather accurately [R. Machleit et al., PRC 63, 034005 (2001)]

Charge symmetry in light hypernuclei

$$-B_{\Lambda} = M_{HYP} - (M_{Core} + M_{\Lambda})$$

A hyperon: no isospin and no charge
if
$$F_{\Lambda-p} = F_{\Lambda-n}$$
 then $B_{\Lambda}({}_{\Lambda}{}^{A}Z) = B_{\Lambda}({}_{\Lambda}{}^{A}Z+1)$

Large charge symmetry breaking in A = 4

 ${}^{4}_{\Lambda}H - {}^{4}_{\Lambda}He$ ground state difference exceptionally large > 300 keV

[M. Juric et al. NP B52 (1973)]

Light Hypernuclei - A Testbed for Charge Symmetry Breaking

Sept. 2018 P Achenbach, U Mainz

Large charge symmetry breaking in A = 4

 ${}^{4}_{\Lambda}H - {}^{4}_{\Lambda}He$ ground state difference $\Delta B/B \sim 1 \%$

- CSB difference about 5 times larger than in ³H ³He system
- quite remarkable, considering the weaker ΛN interaction
- Λp interaction stronger than Λn interaction
- What is the source of such a strong violation of charge symmetry?

Large charge symmetry breaking in A = 4

Coulomb energy effect for a bound neutral particle: shrinking of hypernucleus as compared to core → change in electrostatic repulsion of protons in core

 $- {}^{4}_{\Lambda}H - {}^{4}_{\Lambda}He$ Coulomb correction < 50 keV in <u>opposite</u> direction

overcompensation by a factor 7 due to strong interaction CSB

[A. R. Bodmer and Q. N. Usmani, PRC 31, 1400 (1985)]

Light Hypernuclei - A Testbed for Charge Symmetry Breaking

Sept. 2018 P Achenbach, U Mainz

Emulsion results on 4 H and 4 He

155 events for hyperhydrogen, 279 events for hyperhelium

P Achenbach, U Mainz

The *A* = 4 level schemes (before 2015)

- charge symmetry breaking only if emulsion data is correct
- <u>spin-independent</u> charge symmetry breaking

The A = 4 level schemes (in 2015)

- observation of charge symmetry breaking in γ-ray spectroscopy
- <u>spin-dependent</u> charge symmetry breaking

[T. O. Yamamoto, PRL 115 (2015) 222501]

Hyperfragment decay-pion spectroscopy with electron beams

Systematic studies of the decay-pion line

• consistent result for $B_{\Lambda}({}^{4}_{\Lambda}H)$ from MAMI 2012 and MAMI 2014 independent measurement in two specs, two targets, two beam-times

Light Hypernuclei - A Testbed for Charge Symmetry Breaking

Sept. 2018 P Achenbach, U Mainz

World data on ${}^{4}_{\Lambda}$ H mass

outer error bars correlated from calibration

Current knowledge on CSB in the A = 4 system

Current knowledge on CSB in the A = 4 system

Current knowledge on CSB in the A = 4 system

Combination of all experimental results

inclusion of correlations according to PDG procedure:

- modified systematic errors for each measurement
- treated as independent and averaged in the usual way with other data

Microscopic calculations										
Calculation	NY interaction	B _∧ (⁴ _∧ H) (MeV)	B _∧ (⁴ _∧ He) (MeV)	ΔB _Λ (⁴ _Λ He– ⁴ _Λ H)						
A. Nogga, H. Kamada and W. Gloeckle, PRL 88, 172501 (2002)	SC97 _e	1.47	1.54	75						
	SC89	2.14	1.80	-340						
H. Nemura. Y. Akaishi and Y. Suzuki, PRL 89, 142504 (2002)	SC97 _d	1.67	1.62	-50						
	SC97 _e	2.06	2.02	-40						
	SC97 _f	2.16	2.11	-50						
	SC89	2.55	2.47	-80						
E. Hiyama et al., PRC 65, 011301 (2001)	AV8	2.33	2.28	-50						
Gazda, Gal, NPA 954, 161 (2016)	LO χEFT			-10 ± 30						
Nogga et al., NPA 914 (2013)	NLO χEFT			46						
Gazda, Gal, PRL 116, 122501 (2016)	NLO XEFT			180 ± 130						

until recently, no calculation was able to consistently reproduce ΔB_{Λ} values

Latest theory predictions with chiral interactions

chiral effective models with central force ΛN - ΣN coupling

 \rightarrow mixing of I = 0 and I = 1 hyperons leads to long-range pion exchanges

Revised CSB values in *p*-shell hypernuclei

		multiplet pai	$\left ext{liplet pair} \right \Delta B_{\Lambda}(A,Z) ext{ (keV)} \left ext{ experimental sources } ight $				s Re	eferenc	e		
		$^{7}_{\Lambda}\mathrm{Be} - ^{7}_{\Lambda}\mathrm{Li}^{*}$		_	100 ± 90		emuls. – emuls.			[2, 4]	
		$^{7}_{\Lambda}\mathrm{Li}^{*}-^{7}_{\Lambda}\mathrm{He}$;	_	20 ± 230		FINUDA $- (e,e'K^+)$			[t.w.]	
	_	$^{8}_{\Lambda}\mathrm{Be}-^{8}_{\Lambda}\mathrm{Li}$		+	-40 ± 60		emuls emuls.			[2]	
		$^{10}_{\Lambda}\mathrm{B}-~^{10}_{\Lambda}\mathrm{Be}$	•	-2	220 ± 250		emuls. $-$ emuls.			[2]	
				$+40 \pm 120$		$SKS - (e,e',K^+)$			[13]		
		$^{12}_{\Lambda}\mathrm{C} - ^{12}_{\Lambda}\mathrm{B}$		-570 ± 190 emuls. – emuls.			[2]				
				-2	230 ± 190		SKS –	- (e,e',K^+)		[13]	
	-			+	50 ± 110		FINUDA	$A - (e,e'K^+)$)	[t.w.]	
		$^{16}_{\Lambda}\mathrm{O} - ^{16}_{\Lambda}\mathrm{N}$		—;	360 ± 430		FINUDA	$A - (e,e'K^+)$)	[t.w.]	
	[E. Botta, T. Bressani, A.Felicie						ello, NPA 96	60 (20)17) 1	65]	
		$^{7}_{\Lambda}$ Li	9 A	Be	$^{10}_{\Lambda}\text{B}$		$^{12}_{\Lambda}\mathrm{C}$	$^{13}_{\Lambda}\mathrm{C}$	16	0	
SKS:		5.22(8)	5.9	9(7)	8.10(10)		10.76	11.38(5)	12.4	12(5)	
SKS + C	n:).6 N	/leV: <u>5.88(3)</u>	6.7 6.	1(4) .59	8.89(12) 8.70	1	0.76(19) 11.36	11.69(12) 11.98	13	.02	
	[A. Gal, E. V.	Hur	ngerfo	ord, D. J. N	/ille	ner, Rev.	Mod. Phys.	88 (2	2016)	035004
Large experimental errors in $A = 7$ and higher multiplet disguise possible CSB effect in these systems											olets

Light Hypernuclei - A Testbed for Charge Symmetry Breaking

Sept. 2018 P Achenbach, U Mainz

World data on $A \leq 10$ systems

- clearest signature of charge symmetry breaking in A = 4 system
- weak indications of charge symmetry breaking in $A \neq 4$ systems

- do we have a complete set of statistical and systematic errors?
- are all of the known errors symmetric?
- are all of the known measurements normally distributed?
- were all used estimators unbiased and consistent?
- were outliers of values treated (and discarded) consistently?
- which data have been superceded or excluded by later experiments?
- were cross-correlated errors considered for combined results?
- were likelihood functions used for combined results?
- which algorithms were used for treating inconsistent or discrepant data?
 - comprehensive, regularly updated, and systematic compilation needed
 - best option would be to include hypernuclear data in the PDG reviews

- CSB considerably stronger in hyper- than in ordinary nuclei
 - sizeable charge symmetry breaking effect in A = 4 recently confirmed by high-precision experiments
 - CSB is strongly spin-dependent ... and possibly changing sign between A = 4 ground and excited states
- limitations of the data on higher mass isomultiplets
 - large experimental (esp. systematic) uncertainties
 - improved database needed
- theoretical description of a large CSB effect
 - effective $\pi\Lambda\Lambda$ coupling in LO χ EFT interaction
 - CSB in YN interaction for p-shell nuclei needed

New precision era in hypernuclear physics

