THE DEVELOPMENT OF A NOVEL ARRAY DETECTOR FOR OVERCOMING THE DOSIMETRY CHALLENGES OF MEASURING IN VERY SHORT PULSED CHARGED PARTICLE BEAMS - THE ELIDOSE PROJECT

Radu A. Vasilache¹, Maria – Ana Popovici², Mihai Straticiuc³, Consuela Elena Matei⁴, Daniela Stroe⁵, Liviu Crăciun³, Mihai Radu³,
¹Canberra Packard Ltd., Bucharest, Romania
²Bucharest Polytechnical University, Faculty of Applied Sciences, Bucharest, Romania
³National Institute for R&D in Physics and Nuclear Engineering "Horia Hulubei", Bucharest – Măgurele, Romania
⁴National Institute for Lasers, Plasma and Radiation Physics, Bucharest – Măgurele, Romania
⁵Colțea Clinical Hospital, Bucharest, Romania
ELIDOSE - the project

- October 2016: the project “ELIDOSE” was approved, in the frame of the 5/5.1/ELI-RO programme

- **Main goal**: the development of a prototype array detector for overcoming some of the difficulties of the dosimetry measurements in short pulsed beams of charged particles
Laser accelerated particle beams

The ELI-NP project (ELI-NP white book):
- Two 10 PW lasers coherently added to the high intensity of 10^{23}-10^{24} W/cm2, pulse width 20 fs

The CETAL project (http://cetal.inflpr.ro/node/73):
- A 1 PW laser, pulse width 25 fs

Both lasers have the capacity to generate accelerated particle beams. The time width of the accelerated particle pulses is in the range of some 10ths of picoseconds

H. Schwoerer et al., Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets, Nature 439, 445–448 (26 January 2006)
Challenges for dosimetry measurements

- Very short pulse duration
 - High recombination rates for protons
 - Difficult to determine the recombination correction factor
 - Difficult to determine the polarity (bias) correction factor (which can be rather important for charged particles)

- Unknown energies: not so easy to determine the Bragg peak position
 - For the reasons related to the above and the low repetition rate the measurements spill – by – spill are not feasible
The dosimetry measurements

The corrected reading (IAEA TRS 398):

\[M = (M_{uncorr} - M_0) \times k_{elec} \times k_Q \times k_{TP} \times k_S \times k_{pol} \times k_h \]

where:
- \(k_{elec} \): calibration factor (Gy/C) @ reference energy
- \(k_Q \): energy correction
- \(k_{TP} \): air density correction
- \(k_S \): ion recombination correction
- \(k_{pol} \): polarity (bias) correction
- \(k_h \): humidity correction
Beam analysis & Energy measurements

RCFs
- Gafchromic MD-V3:
 dynamic dose range 1 Gy a- 100 Gy
 spatial resolution < 15 μm
 < 5% energy over 100 keV - 18 MeV
- Gafchromic EBT3
 dynamic range 0.01 Gy - 40 Gy,
 same energy dependence and spatial resolution as the MD-V3
- Gafchromic HD-V2:
 Dynamic dose range: 10 Gy to 1 kGy
 spatial resolution < 5 μm
 same energy dependence as the two above
- Gafchromic EBT-XD
 dynamic range 0.01 Gy - 200 Gy
 spatial resolution of 5 μm
 same energy dependence as the three above

Gafchromic EBT3 (above) and HD-V2 (below) componence. One can immediately see that the thickness of the film requires build up material for the expected proton energies. At low energies, however, the HD-V2 is at a clear adavantage.

www.ashland.com
The recombination correction factor

\[k_s = a_0 + a_1 \left(\frac{M_1}{M_2} \right) + a_2 \left(\frac{M_1}{M_2} \right)^2 \]

- \(a_0, a_1 \) and \(a_2 \) are tabulated in TRS 398 for pulsed and pulsed scanned beams, vs. \(V_1/V_2 \)
- The measurements should be made at least at two polarising voltages, the second one being at most 1/3 of the first
- The polarity effect changes with the voltage, thus the readings should also be corrected for polarity effect.
The polarity correction factor

- For charged particle beams the polarity effect may be important
- The polarity effect will depend on the energy
- The correction factor recommended by TRS 398

\[k_{pol} = \frac{|M_+| + |M_-|}{2M} \]
The prototype detector array

- To overcome these difficulties we propose a chamber array
- The array should include at least 4 identical chambers, each with a different bias and polarity
- Grouping them in combinations of two, we can measure recombination and polarity corrections in a single measurement
- For higher dose and higher energy, the 99% saturation voltage should be around 800 V

a) Schematic drawing of the array detector, consisting of 4 identical plane parallel ion chambers, mounted in PMMA, each one with a different bias.
b) The advanced Markus chamber
The prototype detector array – first model
Preliminary results – proton irradiation

- Beams: Tandetron™ 3 MeV and Tr19 cyclotron 18 MeV (IFIN-HH) – continuous beam
- Used to tune the FLUKA simulations for the Advanced Markus chamber
- The beam was characterised with Gafchromic EBT2 and HD-V2 films
Preliminary results – proton irradiation

Used to tune the FLUKA simulations for the Advanced Markus chamber

Irradiation conditions:
- 3 MeV protons, TandetronTM of IFIN-HH
- 2.8 cm distance from the exit window
- Correction factors calculated according to IAEA TRS 398 & Paganetti (ed.) “Proton Therapy Physics”
- Particle fluence measured via backscatter from a thin gold foil (RBS standard geometry)
Preliminary results – proton irradiation: correction factors

1. Calibration factor for Co-60 in air

\[N_{d,\text{w}Co} = 1.34 \times 10^3 \text{ Gy/microC} \]
\[S_{w,\text{air}Co} = 1.133 \]
\[N_{d,\text{air}Co} = 1.18 \times 10^3 \text{ Gy/microC} \]

2. Stopping power and mean energy for ion pair production for protons:

\[S_{w,\text{air},p}(E) = 1.1545555 \]
\[W_{\text{air},p}(E) = 35.3374 \text{ J/C} \]

\[S_{w,\text{air},p}(E) = \frac{aE}{(E - b)^{(1+n)}} \]

\[a = 1.1425 \]
\[b = 0.025 \]
\[n = 0.0012 \]

3. Correction factor for proton measurement with Co-60 calibrated chamber

\[k_{pCo} = 1.060044^* \]

\(^{*}\)compared to J. Besserer et al., Dosimetry of low-energy protons and light ions, Phys. Med. Biol. 46 (2001), \(k_{pCo} = 1.036 \)
Beam characterisation – 3 MeV beams
Beam characterisation – 18 MeV beams
FLUKA Results - Markus advanced chamber
Source: 3 MeV proton beam (1)

Fluka geometry for a single detector; data are from the technical data sheet
FLUKA Results – particle flux vs. energy

Particle energy (GeV)
Preliminary results – dose calculations

1. From the Advanced Markus™ measurements – 12.45 mGy/s

<table>
<thead>
<tr>
<th>Crt. No.</th>
<th>Beam intensity at target (fA)</th>
<th>Meas. av. current (pA)</th>
<th>Avedev (%)</th>
<th>Irrad. time (s)</th>
<th>M_{(int.)} (nC)</th>
<th>D_{air} (mGy)</th>
<th>Dose rate (mGy/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>9.864</td>
<td>0.33%</td>
<td>6</td>
<td>0.059184</td>
<td>74.68</td>
<td>12.446</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>9.864</td>
<td>0.33%</td>
<td>32</td>
<td>0.315648</td>
<td>398.28</td>
<td>12.446</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>9.864</td>
<td>0.33%</td>
<td>64</td>
<td>0.631296</td>
<td>796.55</td>
<td>12.446</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>9.864</td>
<td>0.33%</td>
<td>192</td>
<td>1.893888</td>
<td>2,389.65</td>
<td>12.446</td>
</tr>
</tbody>
</table>

2. Calibration factor from the FLUKA simulations vs. experimental
 - 1.312 x 10^6 Gy/C FLUKA simulation
 - 1.251 x 10^6 Gy/C experimental
 - 1.222 x 10^6 Gy/C Besserer et al
FLUKA Simulations next step - Markus advanced chamber

Fluka geometry for a system of two detectors; by producing controlled displacements of one of the detectors, the change in dose is quantified.
Preliminary conclusions

1. The Fluka model for the Markus chamber is properly built, the small differences in calculated vs. experimental calibration factor are due to some uncertainties in the entry parameters (beam energy & divergence, windows thicknesses) for the calculations.

2. The Fluka model can be used with good confidence for assessing the reciprocal influence of the chambers in the array.

3. The prototype can be used with good results in measurements in the existing beams, although for measurements at CETAL and ELI-NP a new prototype, of smaller dimensions, will have to be developed.
Acknowledgements

This work has been done under the 04-ELI/2016 - ELIDOSE contract financed by the Institute for Atomic Physics – IFA, in the frame of PNCDI III 5/5.1/ELI-RO programme.

References

IAEA TRS 398, ABSORBED DOSE DETERMINATION IN EXTERNAL BEAM RADIOTHERAPY, Vienna, 2000

BOAG, J.W., Ionization measurements at very high intensities. I. Pulsed radiation beams, Brit. J. Radiol. 23 (1950)

Thank you!