Light-Flavor Hadron Production from Small to Large Collision Systems at ALICE A. G. Knospe The University of Houston on behalf of the ALICE Collaboration

4 September 2018

Charged-Particle Multiplicity Knospe

- N_{part} scaling violated: factor of ≈2 increase from peripheral to central A–A at LHC energies
- Quark-Glauber parameterization
 - Wounded constituent quarks

2

- PRC 67 064905 (2003), PRC 94 024914 (2016)
- N_{q-part} scaling with $N_q=3$ or 5
- 0-5% Xe–Xe: more charged-particle production than mid-central Pb–Pb (similar N_{part})
 - Not explained by participant-quark scaling
 - Not fully reproduced by models
 - Hint of similar behavior at RHIC (Cu–Cu & Au–Au)

Thermal Models

- Most light-flavor hadron yields described fairly well by thermal models with single chemical freeze-out temp. (T_{ch} =156±3 MeV for Pb–Pb at 2.76 TeV)
- Even (anti)nuclei and hyper-nuclei are described
- Short-lived resonances (e.g., K*0) deviate due to re-scattering effects (excluded from fit)
- However, some tension for protons and (multi)strange baryons

Thermal Models

- Most light-flavor hadron yields described fairly well by thermal models with single chemical freeze-out temp. (T_{ch} =156±3 MeV for Pb–Pb at 2.76 TeV)
- Even (anti)nuclei and hyper-nuclei are described
- Short-lived resonances (e.g., K*0) deviate due to re-scattering effects (excluded from fit)
- However, some tension for protons and (multi)strange baryons

Additional effects needed? Baryon annihilation, interacting hadron gas, incomplete hadron spectrum?

Knospe

Similar behavior seen for Pb–Pb at 5.02 TeV: T_{ch}=153±3 MeV

THERMUS: Wheaton *et al.*, *Comput. Phys. Commun.* **180** 84 (2009) **GSI-Heidelberg:** Andronic *et al.*, *PLB* **673** 142 (2009) **SHARE:** Petran *et al.*, *Comput. Phys. Commun.* **185** 2056 (2014)

Strangeness Production

- Smooth evolution of particle production with chargedparticle multiplicity across pp, p–Pb, Xe–Xe, and Pb–Pb collisions
 - No energy dependence
 - Hadron chemistry is driven by the multiplicity (system size)
- Increase of strange-particle production for small systems, saturation around thermalmodel values for large systems
 - Magnitude of strangeness enhancement increases with strange-quark content

Hadron Chemistry: ϕ

Knospe

- The φ meson (ss̄) has hidden strangeness and is a key probe in studying strangeness production
 - Particles with open strangeness are subject to canonical suppression in small systems, while ϕ is not
- Small systems: increase in ϕ/π ratio with multiplicity
 - Not expected for simple canonical suppression
 - Favors non-equilibrium production (γ_s) production of ϕ or all strange particles
 - Ratios ϕ/K and Ξ/ϕ fairly flat across wide multiplicity range
 - The ϕ has "effective strangeness" of 1–2 units

6

Resonances

Resonances

- Suppression of K^{*0} w.r.t. pp and thermal model values
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p–Pb

- Suppression of K^{*0} w.r.t. pp and thermal model values
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p–Pb
- Similar suppression of ρ^0 & $\Lambda(1520)$

10

- Suppression of K^{*0} w.r.t. pp and thermal model values
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p–Pb
- Similar suppression of ρ^0 & $\Lambda(1520)$

11

• No ϕ suppression: lives longer, decays outside fireball

- Suppression of K^{*0} w.r.t. pp and thermal model values
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p–Pb
- Similar suppression of ρ^0 & $\Lambda(1520)$
- Possible weak suppression of Ξ^{*0} w.r.t. pp collisions

- Suppression of K^{*0} w.r.t. pp and thermal model values
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p–Pb
- Similar suppression of ρ^0 & $\Lambda(1520)$
- Possible weak suppression of Ξ^{*0} w.r.t. pp collisions
- No measurement of Σ*±/Λ in Pb–Pb yet
- Ratios do not depend on energy (RHIC→LHC) or collision system (same for p–Pb and Xe–Xe)
- Trends qualitatively described by EPOS
 - Includes scattering effects modeled with UrQMD

¹⁴ Mean Transverse Momentum Knospe

- Unidentified charged hadrons
 - Only small differences (~3%) between Pb–Pb and Xe–Xe
 - Consistent with predictions from hydrodynamic model
- Identified hadrons:
 - Mass ordering of $\langle p_T \rangle$ (see p and ϕ , which have similar masses)
 - Mass ordering breaks down for peripheral A-A, p-Pb and pp

Blast-Wave Fits

- Simultaneous blast-wave fits of π^{\pm} , K[±], & p p_{T} spectra
- A–A collisions
 - T_{kin} decreases and transverse flow velocity $\langle \beta_T \rangle$ increases w/ centrality
 - Xe-Xe and Pb-Pb consistent

Blast-Wave Fits

- Simultaneous blast-wave fits of π^{\pm} , K[±], & p p_{T} spectra
- A–A collisions
 - T_{kin} decreases and transverse flow velocity $\langle \beta_T \rangle$ increases w/ centrality
 - Xe–Xe and Pb–Pb consistent
- Small systems
 - Similar evolution of parameters for pp and p–Pb
 - For similar multiplicities: $\langle \beta_T \rangle$ (and $\langle p_T \rangle$) greater in smaller systems

Baryon-to-Meson Ratios

- Baryon-to-meson ratios vs. p_T allow us to study the interplay of hydrodynamics and recombination
- Compare Xe–Xe & Pb–Pb: consistent results for similar multiplicities

17

- p/
 ratio is useful: baryon and meson with almost the same mass
 - Flat with p_T → consistent with hydrodynamic behavior, but can also be described by some recombination models
 [V. Greco et al, PRC 92 054904 (2015)]

- From low multiplicity (peripheral) to high multiplicity (central):
 - Baryon/Meson ratios depleted at low p_T
 - Enhanced at intermediate p_{T}
- Qualitative similarities between pp, p-Pb, & Pb-Pb

Knospe

 p/π arXiv:1807.11321 Baron/meson ratios in • ੁੰ_ਦ 0.9 $0.50 < p_{_{
m T}} < 0.55 ~{
m GeV}/c$ 2.40 < p_ < 2.60 GeV/c $10.00 < p_{_{
m T}} < 15.00 \; {
m GeV}/c$ different p_{T} regions: + 0.8 + μ) / 0.7 (<u>d</u> 0.6 0.8 Low- p_{T} depletion and + d 0.5 intermediate- p_{T} enhancement 0.4 Similar behavior for the three 0.3 • 0.2F systems 0.1| (×10) (×1) Λ / $K_{\rm S}^0$ pp: 6.50 < p₁ < 8.00 GeV/c $0.60 < p_{_{\rm T}} < 0.80 \; {\rm GeV}/c$ p-Pb: $6.00 < p_{T} < 8.00 \text{ GeV}/c$ Pb-Pb: $6.50 < p_{\tau} < 8.00 \text{ GeV}/c$ 0.8 0.6 0.4 pp: 2.50 < p₊ < 2.90 GeV/c p-Pb: $2.60 < p_{T} < 2.80 \text{ GeV}/c$ 0.2 Pb-Pb: 2.60 < p_ < 2.80 GeV/c (×2) (×4) (×1) 10 100 1000 1000 10 100 1000 10 100 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle_{\mathrm{l}\eta\mathrm{l}<0.5}$ Λ/K^0s pp p-Pb Pb-Pb

- Baron/meson ratios in different p_T regions:
 - Low-p_T depletion and intermediate-p_T enhancement
- Similar behavior for the three systems
- Trend in pp described qualitatively by color reconnection (PYTHIA) and color ropes (DIPSY); overpredicted by collective radial expansion in EPOS

Conclusions

- Charged-particle multiplicity
 - Follows N_{q-part} scaling
 - Central Xe–Xe deviates from Pb–Pb for similar N_{part}
- Thermal models describe yields fairly well, but some tension w/ data
- Strangeness production evolves smoothly with multiplicity
 - No energy or collision-system dependence
 - ϕ yields evolve similar to particles w/ open strangeness, even in small systems.
- Suppression of ρ^0 , K^{*0}, & $\Lambda(1520)$ resonances in central A–A colls.
 - Possible weak suppression of Ξ^{*0}
- p_{T} spectral shapes:
 - Evidence for hydro: mass ordering of $\langle p_T \rangle$ in central A-A
 - Xe–Xe results consistent with Pb–Pb for similar multiplicities
 - Enhancement in baryon/meson ratios at intermediate p_T for larger systems

Additional Material

ratios

Particle

- Suppression of K^{*0} w.r.t. pp and thermal model values
 - Re-scattering of decay products in hadronic medium
 - Hint of K^{*0} suppression in high-mult. pp and p–Pb
- No
 φ suppression: lives longer, decays outside fireball
- Similar suppression of ρ^0 & $\Lambda(1520)$
- Possible weak suppression of Ξ^{*0} w.r.t. pp collisions
- Ratios do not depend on energy (RHIC→LHC) or collision system (same for p–Pb and Xe–Xe)
- Suppression trends qualitatively described by EPOS
 - Includes scattering effects modeled with UrQMD

Nuclei

Knospe

Thermal models

- Hadrons emitted in statistical equilibrium with chemical freeze-out temperature T_{ch}
- Yields proportional to $exp(-m/T_{ch})$
- Coalescence
 - Nuclei formed by baryons close in phase space after kinetic freeze-out
 - Nuclei may break up and re-form during hadronic phase
- Deuterons:
 - Coalescence in small systems and thermal production in A-A
 - Smooth transition between systems
 - Production controlled by system size
- ³He: factor of 5 difference in ³He/p ratio from p–Pb to Pb–Pb
 - But also a large gap in multiplicity
 - More data needed...

Deuterons

25

- Blast-wave model fit of π[±]K[±]p p_T spectra and v₂ → predictions for deuterons
- Hint of common kinetic freeze-out for deuterons and lighter particles

Deuteron Coalescence

 Coalescence parameter for nucleus *i* with mass number A:

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

- Simple coalescence
 - Flat $B_2(p_T)$
 - Simple relationship between d & p v₂:
 - $v_2^{d}(p_T^{d})=2v_2^{p}(2p_T^{p})$
- Simple coalescence does not describe ALICE deuteron measurements in Pb–Pb
 - Describes lower energy A–A data
 - $-B_2$ flatter for smaller collision systems

3

5 6 p_{_} (GeV/*c*)

0

Deuteron Coalescence

 $E_{\mathrm{d}} \frac{\mathrm{d}}{\mathrm{d}p^2}$

 $B_2 =$

 Coalescence parameter for nucleus *i* with mass number A:

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

- Flat $B_2(p_T)$
- Simple relationship between d & p v₂:
 - $v_2^{d}(p_1^{d})=2v_2^{p}(2p_1^{p})$
- Simple coalescence does not describe ALICE deuteron measurements in Pb–Pb
 - Describes lower energy A–A data
 - $-B_2$ flatter for smaller collision systems
 - $-B_2$ evolves smoothly with system size

⁴He and Hypertriton

- Measurements of ⁴He, ⁴He, ³_{Λ}H, & ³_{$\overline{\Lambda}$}H in Pb–Pb collisions
 - Yields well described by thermal models
 - Exponential decrease in (anti)nucleus production (vs. mass)
- Hypertriton lifetime: new measurement consistent with world average and also free Λ lifetime

³He Flow

• ³He *v*₂

- Not as well described by blast-wave as d and p
- Well described by coalescence for central Pb-Pb

