

Quarkonium production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

Gabriele Gaetano Fronzé

Università & INFN Torino, IMT-Atlantique and Subatech Nantes

Jubated

September, 3rd 2018 – Bologna (IT)

Overview

Introduction

1. QGP

- 2. Quarkonium
- 3. The Nuclear Modification Factor
- 4. Motivation for the three systems (pp, p-Pb, Pb-Pb)
- 5. Experimental setup
- 6. J/ψ and $\Upsilon(1S)$ in p-Pb @ $\sqrt{s_{\rm NN}}$ 5.02 TeV and 8.16 TeV
- 7. J/ψ and $\Upsilon(1S)$ in Pb-Pb @ $\sqrt{s_{\rm NN}}$ 5.02 TeV
 - 8. Conclusions

Results

Introduction

What is the QGP?

- QGP (Quark-Gluon Plasma) is a deconfined state of hadronic matter which can form at high temperatures and/or baryonic densities
- ALICE @ LHC observes QGP produced in ultra-relativistic collisions of heavy ions
- Direct observation of QGP is impossible due to the short life of the deconfined phase
- QGP is studied indirectly by means of a number of probes

QGP study via quarkonium production measurement $Q\bar{Q}$ is produced at early stages of the collision Q and \bar{Q} cross QGP interacting with it Q and \bar{Q} cross produced at early stages of the collision Q and \bar{Q} cross QGP interacting with it Q and \bar{Q} cross QGP interacting with it Q and \bar{Q} cross produced via the modified production of resonant states

- QGP modifies quarkonium production ($R_{AA} \neq 1$):
 - Screening by free colour charges reduces $Q\bar{Q}$ potential;
 - Sequential melting of differently bound $Q\bar{Q}$ states can be seen as a thermometer of the QGP;
 - High abundance of Q and \bar{Q} may cause regeneration of quarkonium states

Nuclear Modification Factor R_{AA}

An observable is the nuclear modification factor:

$$R_{AA}^{x} = \frac{1}{T_{AA}} \cdot \frac{N_{AA}^{x}}{\sigma_{pp}^{x}} \qquad T_{AA} = \frac{\langle N_{Coll} \rangle}{\sigma_{pp}^{inel}}$$

Where *x* is the probe we want to study

Nuclear Modification Factor RAA

An observable is the nuclear modification factor

Nuclear Modification Factor RAA

An observable is the nuclear modification factor

Three systems: pp, p-Pb e Pb-Pb

- pp $\rightarrow \sigma_{pp}$ for R_{AA} computation + quarkonium production not totally understood (intrinsically non-perturbative)
- p-Pb → no QGP* formed but Cold Nuclear Matter effects (CNM) may happen
- Pb-Pb \rightarrow QGP forms and might be characterised

* although recent measurements in high-multiplicity pp and p-Pb collisions point to the presence of collective effects reminiscent of those observed in Pb-Pb collisions

p-Pb measurements 2013 and 2016 @ $\sqrt{s_{NN}}$ =5.02 TeV & 8.16 TeV

$J/\psi R_{pA} @ \sqrt{s_{NN}} = 8.16 \text{ TeV}$

• Data compatible with no suppression at backward rapidity

16

• Important suppression at forward rapidity and low p_{T}

$J/\psi R_{pA} @ \sqrt{s_{NN}} = 8.16 \text{ TeV}$

- No significant dependence from $\sqrt{s_{\rm NN}}$
- Suppression is still more important at low p_{T}

17

$J/\psi R_{pA} @ \sqrt{s_{NN}} = 8.16 \text{ TeV}$

- Compatible with Energy Loss and nuclear modification of the PDFs
- Good agreement with models based on shadowing and energy loss

18

$\Upsilon(1S) R_{pA} @ \sqrt{s_{NN}} = 8.16 \text{ TeV}$

 $\Upsilon(1S)$ production is similar to the J/ψ 's one

$\Upsilon(1S) R_{pA} @ \sqrt{s_{NN}} = 8.16 \text{ TeV}$

- Good agreement with models at forward rapidity
- Some tension present between data and models at backward rapidity

Pb-Pb measurements 2011 @ $\sqrt{s_{NN}}$ =2.76 TeV & 2015 @ $\sqrt{s_{NN}}$ =5.02 TeV

- PHENIX @ RHIC at $\sqrt{s_{NN}}$ =200 GeV: monotone suppression increases going to more central collisions
- ALICE @ LHC at $\sqrt{s_{NN}}$ =2.76 TeV: less suppression than at RHIC despite energy is 14x higher

- No clear energy dependence observed
- R_{AA} at $\sqrt{s_{NN}}$ = 5.02 TeV systematically higher than at lower energy, , although compatible within uncertainties

Good agreement between measurements and models which include regeneration phenomena

- larger R_{AA} at low p_{T} , as predicted by regeneration models
- In agreement with regeneration models

$\Upsilon(1S) R_{AA} @ \sqrt{s_{NN}} = 5.02 \text{ TeV}$

 Bottomonium study complements and extends charmonium one (smaller regeneration expected for bottomonium)

26

• No evidence of $p_{\rm T}$ and y dependency

$\Upsilon(1S) R_{AA} @ \sqrt{s_{NN}} = 5.02 \text{ TeV}$

- R_{AA} at $\sqrt{s_{NN}}$ =5.02 TeV systematically higher than at $\sqrt{s_{NN}}$ =2.76 TeV
- Compatibility between measurements at the two energies

$\Upsilon(1S) R_{AA} @ \sqrt{s_{NN}} = 5.02 \text{ TeV}$

- No evidence for regeneration effects (expected to be small anyway)
- Some tension between the trend of latest hydro-dynamical predictions and measurements

Conclusions

Conclusions

- ALICE successfully measures the production of quarkonium in p-Pb and Pb-Pb collisions:
 - The shape of nuclear modification factor in p-Pb collisions is well described by models which include CNM effects
 - Energy, rapidity and $p_{\rm T}$ dependences of J/ ψ $R_{\rm AA}$ are well described by models which include regeneration
 - $\Upsilon(1S)$ allows for an independent check of models since its regeneration is foreseen to be small at the LHC
 - Further measurements will help in better constraining models and clarifying the scaling of quarkonium production with respect to the colliding energy:
 - Further Pb-Pb measurements during the last part of 2018
 - Increase of statistics \rightarrow RUN3 continuous readout (50 kHz triggerless vs. 8kHz triggered at 1kHz)
 - Separation of prompt and non-prompt quarkonia \rightarrow Muon Forward Trackerin RUN3

Grazie per la vostra attenzione!

Backup