Matter ejection from binary neutron stars merger with two different Equations of State

Traversi Silvia University of Ferrara

> Dynamical ejection:

Tidal deformation: equatorial plane

> Dynamical ejection:

Tidal deformation: equatorial plane

Shock at NSs interface and radial oscillations

> Dynamical ejection:

Tidal deformation: equatorial plane

Shock at NSs interface and radial oscillations

▶ Disk: $10^{-3} M_{\odot} < M_{disk} < 0.03 M_{\odot}$

Viscous or neutrino heating

The kilonova signal

Nicholl et al. [arXiv:astro-ph.HE/1710.05456]

The electron fraction

***** Shock: $Y_e > 0.25 - 0.3$ Lanthanide poor

Perego, A.; Radice, D.; Bernuzzi: [arXiv:astro-ph.HE/1711.03982].

The electron fraction

Perego, A.; Radice, D.; Bernuzzi: [arXiv:astro-ph.HE/1711.03982].

***** Shock: $Y_e > 0.25 - 0.3$ Lanthanide poor

✤ Tidal ejection: Y_e < 0.1 Lanthanide rich

The electron fraction

Perego, A.; Radice, D.; Bernuzzi: [arXiv:astro-ph.HE/1711.03982].

***** Shock: $Y_e > 0.25 - 0.3$ Lanthanide poor

Tidal ejection: Y_e < 0.1 Lanthanide rich

***** Wind in polar direction: $Y_e = 0.3 - 0.4$ Lanthanide poor

***** Wind and secular: $Y_e \sim 0.2$ Depends on the lifetime of the HMNS

1. Hadronic stars: $M_{max} \sim 1.6 M_{\odot}$, $R \sim 10 km$

2. Quark stars: $M_{max} \sim 2 M_{\odot}$, R > 11 km

Appearance of hyperons and Δ -resonances Softening of the EOS

1. Hadronic stars: $M_{max} \sim 1.6 M_{\odot}$, $R \sim 10 km$

2. Quark stars: $M_{max} \sim 2 M_{\odot}$, R > 11 km

Appearance of hyperons and Δ -resonances Softening of the EOS

1. Hadronic stars: $M_{max} \sim 1.6 M_{\odot}$, $R \sim 10 km$

2. Quark stars: $M_{max} \sim 2 M_{\odot}$, R > 11 km

2M_{sun}

16

12

14

The framework of the simulations

Two Equations of state

SFHo

N, e^{\pm} , γ , nuclei **\beta- equilibrium condition**

Hadronic 2 families EOS

= SFHo for low densities Hyperons and Δ in the nucleus

The framework of the simulations

Two Equations of state

SFHo

N, e^{\pm} , γ , nuclei **\beta- equilibrium condition**

Hadronic 2 families EOS

= SFHo for low densities Hyperons and Δ in the nucleus

✤ Masses of the symmetric binaries from $1.15 - 1.15 M_{\odot}$ to $1.3 - 1.3 M_{\odot}$ ♦ Einstein Toolkit code: full General Relativistic framework

The framework of the simulations

Two Equations of state

SFHo

N, e^{\pm} , γ , nuclei **\beta- equilibrium condition**

Hadronic 2 families EOS

= SFHo for low densities Hyperons and Δ in the nucleus

✤ Masses of the symmetric binaries from $1.15 - 1.15 M_{\odot}$ to $1.3 - 1.3 M_{\odot}$ ♦ Einstein Toolkit code: full General Relativistic framework

The threshold mass

 $M_{thresh} = (1.54 \pm 0.05) M_{TOV}$

 $M_{thresh}^{SFHo} > 2.8 M_{\odot}$

 $M_{thresh} = (2.43 - 3.38C_{max})M_{TOV}$

 $M_{thresh}^{H2F} \sim 2.5 - 2.6 M_{\odot}$

Gravitational waves

Dynamical ejecta

 $-u_t > 1$

- Calculate the Lorentz factor W the time component of the 4-velocity u_t for fixed time and all cells
- Identify the cells containing unbound fluid Geodesic criterion
- > Obtain **the mass** integrating on the cells
- Select the time with maximum unbound mass

Dynamical ejecta

Geodesic criterion

 $-u_t > 1$

- Calculate the Lorentz factor W the time component of the 4-velocity u_t for fixed time and all cells
- Identify the cells containing unbound fluid
- Obtain the mass integrating on the cells
- Select the time with maximum unbound mass

Mass of the disk

> Consider the last time available (20 ms after merger): quasi stationary state

- > High density cut at $10^{13} g cm^{-3} \sim 10^{-5} M_{\odot}^{-2}$
- > Low density cut at 5 * $10^{6}gcm^{-3} \sim 10^{-11}M_{\odot}^{-2}$ or 5 * $10^{7}gcm^{-3} \sim 10^{-10}M_{\odot}^{-2}$

Preliminary results

Simulation	collapse	dynamical ejecta		disk
	tc - tmdens	Mej	Vav a tmax	Mdisk (cut 10^(-11))
SFHo 1,2	no	0.00127	0.18	0.1006
H2F 1,2	4,39	0.0056	0.13	0.025
SFHo 1,23	no	0.001144	0.18	0.092
H2F 1,23	3,6	0.00786	0.15	0,0214
SFHo 1,3	no	0.0019	0.16	0.1230
H2F 1,3	0	10^(-5)	0.35	

Preliminary results

Simulation	collapse	dynamical ejecta		disk
	tc - tmdens	Mej	Vav a tmax	Mdisk (cut 10^(-11))
SFHo 1,2	no	0.00127	0.18	0.1006
H2F 1,2	4,39	0.0056	0.13	0.025
SFHo 1,23	no	0.001144	0.18	0.092
H2F 1,23	3,6	0.00786	0.15	0,0214
SFHo 1,3	no	0.0019	0.16	0.1230
H2F 1,3	0	10^(-5)	0.35	

♦ Dynamical ejecta: SFHo $\sim 10^{-3} M_{\odot}$, H2F $\sim 5 * 10^{-3} - 10^{-2} M_{\odot}$

- For softer EOS the **shock component** is more relavant
- For configurations near the threshold mass, the radial oscillations can eject matter

Preliminary results

Simulation	collapse	dynamical ejecta		disk
	tc - tmdens	Mej	Vav a tmax	Mdisk (cut 10^(-11))
SFHo 1,2	no	0.00127	0.18	0.1006
H2F 1,2	4,39	0.0056	0.13	0.025
SFHo 1,23	no	0.001144	0.18	0.092
H2F 1,23	3,6	0.00786	0.15	0,0214
SFHo 1,3	no	0.0019	0.16	0.1230
H2F 1,3	0	10^(-5)	0.35	

♦ Dynamical ejecta: SFHo $\sim 10^{-3} M_{\odot}$, H2F $\sim 5 * 10^{-3} - 10^{-2} M_{\odot}$

- For softer EOS the **shock component** is more relavant
- For configurations near the threshold mass, the radial oscillations can eject matter

***** Disk: SFHo $\sim 10^{-1} M_{\odot}$, H2F $\sim 10^{-2} M_{\odot}$

• For stiff EOS the **tidal deformability** is bigger

Interpretation of GW170817

Total mass of about $2.72M_{\odot}$: in the two families scenario, the event cannot be a NS-NS merger because it would lead to prompt collapse

Interpretation of GW170817

Total mass of about $2.72M_{\odot}$: in the two families scenario, the event cannot be a NS-NS merger because it would lead to prompt collapse

The effettive tidal deformability is inside the lower an upper limits imposed by GW170817

For the future: we would like to perform simulations with the quarks EOS

Interpretation of GW170817

Total mass of about $2.72M_{\odot}$: in the two families scenario, the event cannot be a NS-NS merger because it would lead to prompt collapse

The effettive tidal deformability is inside the lower an upper limits imposed by GW170817

For the future: we would like to perform simulations with the quarks EOS

Thanks for the attention