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➢ Dynamical ejection:

❖ Tidal deformation: equatorial plane

❖ Shock at NSs interface and radial oscillations

➢ Disk:  10−3𝑀⨀ < 𝑀𝑑𝑖𝑠𝑘 < 0.03𝑀⨀

❖ Viscous or neutrino heating



R-process path

Haevy elements peacks
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Blue Kilonova
𝑀𝑒𝑗

𝐵 ∼ 0.01𝑀⨀ , 𝑣𝑒𝑗
𝐵 = 0.27𝑐 , 

𝑘𝐵 = 0.5𝑐𝑚2𝑠−1

Purple Kilonova
𝑀𝑒𝑗

𝑃 ∼ 0.03𝑀⨀ , 𝑣𝑒𝑗
𝑃 = 0.11𝑐 , 

𝑘𝑃 = 3𝑐𝑚2𝑠−1

Red Kilonova
𝑀𝑒𝑗

𝑅 ∼ 0.01𝑀⨀ , 𝑣𝑒𝑗
𝑅 = 0.16𝑐 , 

𝑘𝑅 = 10𝑐𝑚2𝑠−1



The electron fraction
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The electron fraction

❖ Shock: 𝒀𝒆 > 𝟎. 𝟐𝟓 − 𝟎. 𝟑
Lanthanide poor

❖ Tidal ejection: 𝒀𝒆 < 𝟎. 𝟏
Lanthanide rich

❖ Wind in polar direction: 𝒀𝒆 = 𝟎. 𝟑 − 𝟎. 𝟒
Lanthanide poor

❖ Wind and secular: 𝒀𝒆 ∼ 𝟎.𝟐
Depends on the lifetime of the HMNS

Perego, A.; Radice, D.; Bernuzzi: [arXiv:astro-ph.HE/1711.03982].
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The threshold mass

𝑀𝑡ℎ𝑟𝑒𝑠ℎ = 1.54 ± 0.05 𝑀𝑇𝑂𝑉 𝑀𝑡ℎ𝑟𝑒𝑠ℎ = 2.43 − 3.38𝐶𝑚𝑎𝑥 𝑀𝑇𝑂𝑉

𝑴𝒕𝒉𝒓𝒆𝒔𝒉
𝑺𝑭𝑯𝒐 > 𝟐. 𝟖𝑴⨀ 𝑴𝒕𝒉𝒓𝒆𝒔𝒉

𝑯𝟐𝑭 ∼ 𝟐. 𝟓 − 𝟐. 𝟔𝑴⨀



Maximum density

Black hole

𝑀⨀

𝑀⨀

No collapse

SFHo 1.3-1.3 Collapse in few ms

H2F 1.23-1.23

Prompt collapse

H2F 1.25-1.25



Gravitational waves
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𝑴𝒕𝒉𝒓𝒆𝒔𝒉
𝑯𝟐𝑭 ∼ 𝟐.𝟒𝟖𝑴⨀
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Mass of the disk

➢ Consider the last time available (20 ms after merger): quasi stationary state

➢ High density cut at 1013𝑔𝑐𝑚−3 ∼ 10−5𝑀⨀
−2

➢ Low density cut at 5 ∗ 106𝑔𝑐𝑚−3∼ 10−11𝑀⨀
−2 or 5 ∗ 107𝑔𝑐𝑚−3 ∼ 10−10𝑀⨀

−2
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Preliminary results

❖Dynamical ejecta:  SFHo~10−3𝑀⨀ , H2F ~5 ∗ 10−3 − 10−2𝑀⨀

❖Disk:  SFHo~10−1𝑀⨀ , H2F ~10−2𝑀⨀

• For softer EOS the shock component is more relavant
• For configurations near the threshold mass, the radial oscillations can eject matter

• For stiff EOS the tidal deformability is bigger
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Thanks for the attention


