Backup

Spectroscopy and Cross Sections of Near-Drip Line N=28 Aluminum and Island of Inversion Neon Produced by Nucleon Knockout Reactions

MURRAY Ian

Institut de Physique Nucléaire d'Orsay

Comprendre le monde, construire l'avenir

- Introduction
- 2 Experimental techniques
- 3 Experimental setup
- 4) 32 Ne around N=20
- Interpretation 5
- 39,40,41 Al around and at N=28 6
- Interpretation 7
- 8 Conclusion

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Driving forces of shell (*and magic number*) evolution

Theoretical effective single particle (orbital) energies for N = 20 isotones. Figure from Tsunoda et al. 2017.

So-called normal and intruder neutron configurations

Tensor component of the monopole part of the NN interaction

 Monopole part of the tensor force between proton and neutrons and spin-orbit coupling partners: *j*_> = ℓ + *s* and *j*_< = ℓ − *s*

• Energy Splitting:

$$(2j_{>}+1)V_{j>j'}^{tensor} + (2j_{<}+1)V_{j$$

Intruders and correlations

- N = 20 Island of inversion: multiparticle/hole (such as 2p-2h) configurations energetically favored to take over the ground state
- Intruder states highly correlated to compensate for the energy loss from unnatural filling
- · Smaller shell gap easier to overcome

Introduction				^{39,40,41} Al	Conclusion	
Island of In	version $N = 2$	20				

				N = 20				
$^{30}_{14}\mathbf{Si}_{16}$	³¹ ₁₄ Si ₁₇	$^{32}_{14}{ m Si}_{18}$	³³ ₁₄ Si ₁₉	$^{34}_{14}{ m Si}_{20}$	$^{35}_{14}{ m Si}_{21}$	³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	³⁸ ₁₄ Si ₂₄
²⁹ ₁₃ Al ₁₆	³⁰ ₁₃ Al ₁₇	³¹ ₁₃ Al ₁₈	³² ₁₃ Al ₁₉	$^{33}_{13}\mathrm{Al}_{20}$	³⁴ ₁₃ Al ₂₁	³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄
²⁸ ₁₂ Mg ₁₆	²⁹ ₁₂ Mg ₁₇	$^{30}_{12}Mg_{18}$	$^{31}_{12}Mg_{19}$	$^{32}_{12}Mg_{20}$	³³ ₁₂ Mg ₂₁	³⁴ ₁₂ Mg ₂₂	$^{35}_{12}Mg_{23}$	³⁶ ₁₂ Mg ₂₄
²⁷ ₁₁ Na ₁₆	²⁸ ₁₁ Na ₁₇	²⁹ ₁₁ Na ₁₈	³⁰ ₁₁ Na ₁₉	$^{31}_{11}{ m Na}_{20}$	³² ₁₁ Na ₂₁	³³ ₁₁ Na ₂₂	³⁴ ₁₁ Na ₂₃	³⁵ ₁₁ Na ₂₄
²⁶ ₁₀ Ne ₁₆	²⁷ ₁₀ Ne ₁₇	²⁸ ₁₀ Ne ₁₈	²⁹ ₁₀ Ne ₁₉	³⁰ ₁₀ Ne ₂₀	³¹ ₁₀ Ne ₂₁	³² ₁₀ Ne ₂₂	³³ ₁₀ Ne ₂₃	³⁴ ₁₀ Ne ₂₄

 Consider only isotopes with even numbers of protons and neutrons

Horizontal bars are shell model calculations with EKK developed *sdpf* effective interaction Tsunoda et al. 2017. Experimental data from Basunia 2010; Basunia and Hurst 2016; Doornenbal et al. 2013; Nica, Cameron, and Singh 2012; Nica and Singh 2012; Shamsuzzoha Basunia 2013; Takeuchi et al. 2012.

Introduction				^{39,40,41} Al	Conclusion	
Island of In	version $N = 2$	20				

					N = 20				
	³⁰ ₁₄ Si ₁₆	$^{31}_{14}{\rm Si}_{17}$	$^{32}_{14}{ m Si}_{18}$	$^{33}_{14}{\rm Si}_{19}$	$^{34}_{14}{\rm Si}_{20}$	$^{35}_{14}\mathrm{Si}_{21}$	³⁶ ₁₄ Si ₂₂	$^{37}_{14}{\rm Si}_{23}$	³⁸ ₁₄ Si ₂₄
	²⁹ ₁₃ Al ₁₆	³⁰ ₁₃ Al ₁₇	³¹ ₁₃ Al ₁₈	³² ₁₃ Al ₁₉	³³ ₁₃ Al ₂₀	³⁴ ₁₃ Al ₂₁	³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄
	$^{28}_{12}Mg_{16}$	²⁹ ₁₂ Mg ₁₇	³⁰ ₁₂ Mg ₁₈	$^{31}_{12}Mg_{19}$	$^{32}_{12}Mg_{20}$	$^{33}_{12}Mg_{21}$		$^{35}_{12}Mg_{23}$	$^{36}_{12}Mg_{24}$
	²⁷ ₁₁ Na ₁₆	²⁸ ₁₁ Na ₁₇	²⁹ 11Na ₁₈	³⁰ ₁₁ Na ₁₉	³¹ ₁₁ Na ₂₀	³² ₁₁ Na ₂₁	³³ ₁₁ Na ₂₂	³⁴ ₁₁ Na ₂₃	³⁵ ₁₁ Na ₂₄
	²⁶ ₁₀ Ne ₁₆	²⁷ ₁₀ Ne ₁₇	²⁸ ₁₀ Ne ₁₈	²⁹ ₁₀ Ne ₁₉	³⁰ ₁₀ Ne ₂₀	³¹ ₁₀ Ne ₂₁	³² ₁₀ Ne ₂₂	³³ ₁₀ Ne ₂₃	³⁴ ₁₀ Ne ₂₄
ĺ		-							

- So-called *island of inversion* $\approx Z \leq 12$ and $N \geq 20$
- From spherical to prolate deformation in Mg to Ne
- Presently understood as a *large area of deformation*

Horizontal bars are shell model calculations with EKK developed *sdpf* effective interaction Tsunoda et al. 2017. Experimental data from Basunia 2010; Basunia and Hurst 2016; Doornenbal et al. 2013; Nica, Cameron, and Singh 2012; Nica and Singh 2012; Shamsuzzoha Basunia 2013; Takeuchi et al. 2012.

- $\bullet\,$ Nuclear reactions of fast ion-beams with targets \rightarrow appreciable probability to populate nuclear excited states of the reaction residue
- De-excitation of states observed in motion (ion-beam)
 - · Doppler shift at relativistic ion-beam energy

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup RIKEN Nishina Center for Accelerator-Based Science

Superconducting Ring Cyclotron (SRC)

Overview of the RIBF accelerators Okuno, Fukunishi, and Kamigaito 2012.

RIKEN Nishina Center Okuno, Fukunishi, and Kamigaito 2012.

BigRIPS fragment separator

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Overview of BigRIPS separator, ZeroDegree spectrometer, beamline detectors and DALI

Overview of the IRC, SRC accelerators and the BigRIPS separator and ZeroDegree spectrometer. Image from Kubo et al. 2012.

- RIKEN BigRIPS separator and ZeroDegree spectrometer, in combination with beamline detectors acts as a kind of *filter* to select a reaction channel
- Projectiles (before reaction target) and reaction residues (after reacterion target) are selected in data analysis

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Overview of BigRIPS separator, ZeroDegree spectrometer, beamline detectors and DALI

Overview of the IRC, SRC accelerators and the BigRIPS separator and ZeroDegree spectrometer. Image from Kubo et al. 2012.

- RIKEN BigRIPS separator and ZeroDegree spectrometer, in combination with beamline detectors acts as a kind of *filter* to select a reaction channel
- Projectiles (before reaction target) and reaction residues (after reacterion target) are selected in data analysis

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Overview of BigRIPS separator, ZeroDegree spectrometer, beamline detectors and DALI

Overview of the IRC, SRC accelerators and the BigRIPS separator and ZeroDegree spectrometer. Image from Kubo et al. 2012.

- RIKEN BigRIPS separator and ZeroDegree spectrometer, in combination with beamline detectors acts as a kind of *filter* to select a reaction channel
- Projectiles (before reaction target) and reaction residues (after reacterion target) are selected in data analysis
- DALI2 detector arrays surrounds reaction target to observe prompt gamma-rays

Table: Two-proton knockout

E_{γ} (keV)	Yield/100 ions
708(5) _{stat.}	33(3)
1405(19)stat.	17(3)

Fit of ${}^{34}Mg({}^{9}Be,X)^{32}Ne$ doppler reconstructed γ -ray energy spectrum, $m_{\gamma} \leq 3$, and with add-back

- Peak around 700 keV previously identified and interpreted as $2^+_1 \rightarrow 0^+_{g.s.}$ transition
- New transition observed around 1400 keV in 2-proton knockout

Table: One-proton knockout

E_{γ} (keV)	Yield/100 ions
710(5) _{stat.}	72(7)
1415(21)stat.	17(5)

Fit of 33 Na(9 Be,X) 32 Ne doppler reconstructed γ -ray energy spectrum, $m_{\gamma} \leq 3$, and with add-back

- Peak around 700 keV previously identified and interpreted as $2^+_1 \rightarrow 0^+_{g.s.}$ transition
- New transition observed around 1400 keV in 2-proton knockout and 1-proton knockout

Background subtracted coincidences for 1410(15) keV (1300 keV to 1500 keV), combined -2 & -1p, all m_{γ}

- 1410(15) keV coincident with 709(12) keV with relative intensity of 108(20) %
- Suggests two transitions as part of cascade
- Consistent with interpretation of 4⁺ → 2⁺ transition
 - systematics, comparison to theoretical exclusive cross sections, low *S_n* ...

- Good agreement with predicted $E(4_1^+)$ and $E(2_1^+)$
- No other levels below extrapolated neutron separation energy to compete with transition assignments
- Experimental R_{4/2} ratio of 2.99 close to (and larger than) predicted 2.86, 2.45 by SM calculations

Horizontal bars are shell model calculations with EKK developed *sdpf* effective interaction Tsunoda et al. 2017. Experimental data from Nuclear data sheets and Doornenbal et al. 2013; Nica, Cameron, and Singh 2012; Takeuchi et al. 2012.

Introduction Exp. techniques Exp. setup 32 Ne Interpretation 39,40,41 Al Interpretation Conclusion Backup Interpretation of $E(4^+_1)$

Horizontal bars are shell model calculations with EKK developed *sdpf* effective interaction Tsunoda et al. 2017. Experimental data from Nuclear data sheets and Doornenbal et al. 2013; Nica, Cameron, and Singh 2012; Takeuchi et al. 2012.

			Interpretation	^{39,40,41} Al	Conclusion	
Interpretati	on of $E(4_1^+)$					

$$N = 20$$

				N = 20				
³⁰ ₁₄ Si ₁₆	³¹ ₁₄ Si ₁₇	$^{32}_{14}{ m Si}_{18}$	³³ ₁₄ Si ₁₉	³⁴ ₁₄ Si ₂₀	³⁵ ₁₄ Si ₂₁	³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	³⁸ ₁₄ Si ₂₄
²⁹ ₁₃ Al ₁₆	³⁰ ₁₃ Al ₁₇	³¹ ₁₃ Al ₁₈	³² ₁₃ Al ₁₉	³³ ₁₃ Al ₂₀	³⁴ ₁₃ Al ₂₁	³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄
$^{28}_{12}Mg_{16}$	$^{29}_{12}Mg_{17}$	$^{30}_{12}Mg_{18}$	$^{31}_{12}Mg_{19}$	$^{32}_{12}Mg_{20}$	$^{33}_{12}Mg_{21}$	$^{34}_{12}Mg_{22}$	$^{35}_{12}Mg_{23}$	$^{36}_{12}Mg_{24}$
²⁷ ₁₁ Na ₁₆	²⁸ ₁₁ Na ₁₇	²⁹ ₁₁ Na ₁₈	³⁰ ₁₁ Na ₁₉	³¹ ₁₁ Na ₂₀	³² ₁₁ Na ₂₁	³³ ₁₁ Na ₂₂	³⁴ ₁₁ Na ₂₃	³⁵ ₁₁ Na ₂₄
²⁶ ₁₀ Ne ₁₆	²⁷ ₁₀ Ne ₁₇	²⁸ ₁₀ Ne ₁₈	²⁹ ₁₀ Ne ₁₉	³⁰ ₁₀ Ne ₂₀	$^{31}_{10}\text{Ne}_{21}$	³² ₁₀ Ne ₂₂	³³ ₁₀ Ne ₂₃	³⁴ ₁₀ Ne ₂₄
						•		

					Interpretatio	n ^{39,40,4}			Conclusion	
Interpretati	on of $E($	$4_1^+)$								
					N = 20					
	$^{30}_{14}{ m Si}_{16}$	³¹ ₁₄ Si ₁₇	$^{32}_{14}{ m Si}_{18}$	³³ ₁₄ Si ₁₉	$^{34}_{14}{ m Si}_{20}$	³⁵ ₁₄ Si ₂₁	³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	³⁸ ₁₄ Si ₂₄	
	²⁹ ₁₃ Al ₁₆	³⁰ ₁₃ Al ₁₇	³¹ ₁₃ Al ₁₈	³² ₁₃ Al ₁₉	³³ ₁₃ Al ₂₀	³⁴ ₁₃ Al ₂₁	³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄	
	$^{28}_{12}Mg_1$ A	dditiona	l evidenc	e for ³² N	e belongi	ng to the	island of	f inversio	n ⁵ Mg ₂₄	
	²⁷ ₁₁ Na ₁₆	²⁸ ₁₁ Na ₁₇	²⁹ ₁₁ Na ₁₈	³⁰ 11Na ₁₉	³¹ ₁₁ Na ₂₀	³² ₁₁ Na ₂₁	³³ ₁₁ Na ₂₂	³⁴ 11Na ₂₃	³⁵ ₁₁ Na ₂₄	
	$^{26}_{10}$ Ne ₁₆	²⁷ ₁₀ Ne ₁₇	²⁸ ₁₀ Ne ₁₈	$^{29}_{10}$ Ne ₁₉	$^{30}_{10}$ Ne ₂₀	$^{31}_{10}\text{Ne}_{21}$		³³ ₁₀ Ne ₂₃	³⁴ ₁₀ Ne ₂₄	

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Interpretation of one and two-nucleon knockout cross sections

 Nuclear structure and reaction theory cannot be disentangled to explain trend

Data taken from Bazin et al. 2003; Fallon et al. 2010; Tostevin and Brown 2006

- · Limited trend in neutron-rich Neon isotopes
- Similarity between EEdf1 and SDPF-M shell model interactions (similar two-nucleon amplitudes (TNAs))

			^{39,40,41} Al	Conclusion	
Neutron nu	mber $N = 28$				

N = 20		-		-	-			N = 28
³⁷ ₁₇ Cl ₂₀	³⁸ ₁₇ Cl ₂₁	³⁹ ₁₇ Cl ₂₂	⁴⁰ ₁₇ Cl ₂₃	⁴¹ ₁₇ Cl ₂₄	⁴² ₁₇ Cl ₂₅	⁴³ ₁₇ Cl ₂₆	44 17Cl ₂₇	45 17Cl ₂₈
$^{36}_{16}\mathrm{S}_{20}$	$^{37}_{16}S_{21}$	$^{38}_{16}S_{22}$	³⁹ ₁₆ S ₂₃	${}^{40}_{16}\mathrm{S}_{24}$	$^{41}_{16}\mathrm{S}_{25}$	$^{42}_{16}S_{26}$	$^{43}_{16}S_{27}$	$^{44}_{16}S_{28}$
$^{35}_{15}\mathrm{P}_{20}$	36P 15P21	³⁷ ₁₅ P ₂₂	38P 15P23	³⁹ ₁₅ P ₂₄	⁴⁰ ₁₅ P ₂₅	⁴¹ ₁₅ P ₂₆	$^{42}_{15}\mathrm{P}_{27}$	⁴³ ₁₅ P ₂₈
$^{34}_{14}{ m Si}_{20}$	$^{35}_{14}{ m Si}_{21}$	³⁶ ₁₄ Si ₂₂	$^{37}_{14}\rm{Si}_{23}$	$^{38}_{14}\rm{Si}_{24}$	³⁹ ₁₄ Si ₂₅	$^{40}_{14}\rm{Si}_{26}$	⁴¹ ₁₄ Si ₂₇	⁴² ₁₄ Si ₂₈
33 ₁₃ Al ₂₀	³⁴ ₁₃ Al ₂₁	35 13Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄	38 13 Al ₂₅	³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈
$^{32}_{12}Mg_{20}$	$^{33}_{12}Mg_{21}$	³⁴ ₁₂ Mg ₂₂	³⁵ ₁₂ Mg ₂₃	³⁶ ₁₂ Mg ₂₄	³⁷ ₁₂ Mg ₂₅	³⁸ ₁₂ Mg ₂₆	³⁹ ₁₂ Mg ₂₇	⁴⁰ ₁₂ Mg ₂₈

• Ex: observed with decreasing $E(2_1^+)$ energy

			^{39,40,41} Al	Conclusion	
Neutron nur	mber $N = 28$				

N = 20		-		-	-			N = 28
³⁷ ₁₇ Cl ₂₀	³⁸ ₁₇ Cl ₂₁	³⁹ ₁₇ Cl ₂₂	⁴⁰ ₁₇ Cl ₂₃	$^{41}_{17}\mathrm{Cl}_{24}$	⁴² ₁₇ Cl ₂₅	⁴³ ₁₇ Cl ₂₆	44 17Cl ₂₇	45 17Cl ₂₈
$^{36}_{16}\mathrm{S}_{20}$	$^{37}_{16}S_{21}$	$^{38}_{16}\mathrm{S}_{22}$	³⁹ ₁₆ S ₂₃	$^{40}_{16}\mathrm{S}_{24}$	${}^{41}_{16}{\rm S}_{25}$	$^{42}_{16}S_{26}$	$^{43}_{16}\mathrm{S}_{27}$	$^{44}_{16}\mathrm{S}_{28}$
$^{35}_{15}\mathrm{P}_{20}$	³⁶ ₁₅ P ₂₁	³⁷ ₁₅ P ₂₂	38P 15P23	³⁹ ₁₅ P ₂₄	⁴⁰ ₁₅ P ₂₅	⁴¹ ₁₅ P ₂₆	⁴² ₁₅ P ₂₇	⁴³ ₁₅ P ₂₈
$^{34}_{14}{ m Si}_{20}$	$^{35}_{14}{ m Si}_{21}$	³⁶ ₁₄ Si ₂₂	$^{37}_{14}\rm{Si}_{23}$	³⁸ ₁₄ Si ₂₄	³⁹ ₁₄ Si ₂₅	$^{40}_{14}\rm{Si}_{26}$	⁴¹ ₁₄ Si ₂₇	⁴² ₁₄ Si ₂₈
33 ₁₃ Al ₂₀	³⁴ ₁₃ Al ₂₁	35 13Al ₂₂	³⁶ ₁₃ Al ₂₃	37 13Al ₂₄	38 13 Al ₂₅	³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈
$^{32}_{12}Mg_{20}$	$^{33}_{12}Mg_{21}$	³⁴ ₁₂ Mg ₂₂	³⁵ ₁₂ Mg ₂₃	³⁶ ₁₂ Mg ₂₄	³⁷ ₁₂ Mg ₂₅	³⁸ ₁₂ Mg ₂₆	³⁹ ₁₂ Mg ₂₇	⁴⁰ ₁₂ Mg ₂₈

- Ex: observed with decreasing $E(2_1^+)$ energy
- Evolution of deformation from spherical $^{48}\text{Ca} \rightarrow$ oblate ^{42}Si
- Removal of $\pi 0d_{3/2}$ protons $\Rightarrow \downarrow$ spiting of $\nu 0f_{5/2}$ and $\nu 0f_{7/2}$
- Jahn-Teller effect (near degeneracy of orbits) favours deformation
- ∆j = 2 with occupied and valence proton/neutron orbitals ⇒ cross-shell quadrupole excitations (SU(3) symmetries of Elliott)

			^{39,40,41} Al	Conclusion	
Neutron nur	mber $N = 28$				

N = 20		-	_	-	-			N = 28
³⁷ ₁₇ Cl ₂₀	³⁸ ₁₇ Cl ₂₁	³⁹ ₁₇ Cl ₂₂	⁴⁰ ₁₇ Cl ₂₃	⁴¹ ₁₇ Cl ₂₄	⁴² ₁₇ Cl ₂₅	⁴³ ₁₇ Cl ₂₆	44 17Cl ₂₇	45 17Cl ₂₈
$^{36}_{16}\mathrm{S}_{20}$	$^{37}_{16}S_{21}$	$^{38}_{16}S_{22}$	³⁹ ₁₆ S ₂₃	${}^{40}_{16}\mathrm{S}_{24}$	$^{41}_{16}\mathrm{S}_{25}$	$^{42}_{16}S_{26}$	$^{43}_{16}S_{27}$	$^{44}_{16}\mathrm{S}_{28}$
³⁵ ₁₅ P ₂₀	36P 15P21	³⁷ ₁₅ P ₂₂	38P 15P23	³⁹ ₁₅ P ₂₄	⁴⁰ ₁₅ P ₂₅	⁴¹ ₁₅ P ₂₆	$^{42}_{15}\mathrm{P}_{27}$	⁴³ ₁₅ P ₂₈
$^{34}_{14}{\rm Si}_{20}$	³⁵ ₁₄ Si ₂₁	³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	³⁸ ₁₄ Si ₂₄	³⁹ ₁₄ Si ₂₅	⁴⁰ ₁₄ Si ₂₆	⁴¹ ₁₄ Si ₂₇	$^{42}_{14}{\rm Si}_{28}$
³³ ₁₃ Al ₂₀	³⁴ ₁₃ Al ₂₁	35 13Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄	38 13 Al ₂₅	³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈
$^{32}_{12}Mg_{20}$	$^{33}_{12}Mg_{21}$	³⁴ ₁₂ Mg ₂₂	$^{35}_{12}Mg_{23}$	³⁶ ₁₂ Mg ₂₄	³⁷ ₁₂ Mg ₂₅	³⁸ ₁₂ Mg ₂₆	³⁹ ₁₂ Mg ₂₇	⁴⁰ ₁₂ Mg ₂₈

 The intermediate isotopes of aluminum (N ≈ 28) between predicted prolate and oblate ground state configurations

- Ex: observed with decreasing $E(2_1^+)$ energy
- Evolution of deformation from spherical $^{48}\text{Ca} \rightarrow$ oblate ^{42}Si
- Removal of $\pi 0d_{3/2}$ protons $\Rightarrow \downarrow$ spiting of $\nu 0f_{5/2}$ and $\nu 0f_{7/2}$
- Jahn-Teller effect (near degeneracy of orbits) favours deformation
- ∆j = 2 with occupied and valence proton/neutron orbitals ⇒ cross-shell quadrupole excitations (SU(3) symmetries of Elliott)

				^{39,40,41} Al	Conclusion	
Nucleon know	ockout reactio	ns employe	ed			

						N = 28
³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	³⁸ ₁₄ Si ₂₄	³⁹ ₁₄ Si ₂₅	⁴⁰ ₁₄ Si ₂₆	⁴¹ Si ₂₇	⁴² ₁₄ Si ₂₈
³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	³⁷ ₁₃ Al ₂₄	³⁸ ₁₃ Al ₂₅	³⁹ ₁₃ Al ₂₆	40 Al	41 Al
³⁴ ₁₂ Mg ₂₂	$^{35}_{12}Mg_{23}$	$^{36}_{12}Mg_{24}$	$^{37}_{12}Mg_{25}$	$^{38}_{12}Mg_{26}$	$^{39}_{12}{\rm Mg}_{27}$	$^{40}_{12}Mg_{28}$
³³ 11Na ₂₂	³⁴ ₁₁ Na ₂₃	³⁵ ₁₁ Na ₂₄	³⁶ ₁₁ Na ₂₅	³⁷ ₁₁ Na ₂₆	³⁸ ₁₁ Na ₂₇	³⁹ ₁₁ Na ₂₈
$^{32}_{10}Ne_{22}$	³³ ₁₀ Ne ₂₃	³⁴ ₁₀ Ne ₂₄	³⁵ ₁₀ Ne ₂₅	³⁶ ₁₀ Ne ₂₆	³⁷ ₁₀ Ne ₂₇	³⁸ ₁₀ Ne ₂₈

			^{39,40,41} Al	Conclusion	
40 Al(C/C ₂ H	$I_4,X)^{39}Al$				

$\overline{E_{\gamma}}$ (keV)	Yield 100 ions	Coinc
604(8) _{stat} (5) _{syst}	14(2)	800
683(10)stat. (5)syst.	11(2)	883
764(8) ^{1,2}	$0(3)^1$	
$800(8)^2$	27(3)	604
883(8) ²	25(2)	683
995(8) ²	7(2)	883
1416(24)stat. (5)syst.	9(2)	
1706(28)stat. (5)syst.	6(2)	

1 Not directly observed.

² Transition energy and uncertainty from literature Stroberg et al. 2014.

Fit of ${}^{40}\rm{Al}(C/C_2H_4,X)^{39}\rm{Al}$ doppler reconstructed $\gamma\text{-ray energy spectrum},$ m_γ \leq 5, and with add-back

⁴⁰ ₁₄ Si ₂₆	⁴¹ ₁₄ Si ₂₇	⁴² Si ₂₈
³⁹ ₁₃ Al ₂₆	⁴⁰ / ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈

E_{γ} (keV)	Yield 100 ions	Coinc.
604(8) _{stat} (5) _{syst}	14(2)	800
683(10)stat. (5)syst.	11(2)	883
764(8) ^{1,2}	$0(3)^1$	
$800(8)^2$	27(3)	604
883(8) ²	25(2)	683
995(8) ²	7(2)	883
1416(24)stat. (5)syst.	9(2)	
1706(28)stat. (5)syst.	6(2)	

1 Not directly observed.

² Transition energy and uncertainty from literature Stroberg et al. 2014.

Fit of ${}^{40}\rm{Al}(C/C_2H_4,X){}^{39}\rm{Al}$ doppler reconstructed $\gamma\text{-ray energy spectrum},$ $m_\gamma \leq 5,$ and with add-back

• New transitions in addition to previously observed 764(8), 800(8), 883(8) and 995(8) Stroberg et al. 2014

⁴⁰ ₁₄ Si ₂₆	⁴¹ ₁₄ Si ₂₇	⁴² ₁₄ Si ₂₈
³⁹ ₁₃ Al ₂₀	⁴⁰ / ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈

			^{39,40,41} Al	Conclusion	
42 Si(C/C ₂ H	4,X) ⁴¹ Al				

E_{γ} (keV)	Yield 100 ions	Coinc.
428(4)stat. (5)syst.	12(1)	505
		923
505(19)stat. (5)syst.	2.7(9)	428
923(10)stat. (5)syst.	4.8(9)	428
$992(10)_{stat.}(5)_{syst.}^{1}$		
$1017(35)_{stat.}(5)_{syst.}^{1}$	1.3(9)	
1424(27)stat. (5)syst.	2.2(7)	

¹ The 992 keV transition fit from inelastic scattering and 1017 keV transition fit from proton knockout fall within uncertainties.

Fit of $^{42}\rm{Si}(C/C_2H_4,X)^{41}Al$ doppler reconstructed γ -ray energy spectrum, $m_\gamma \leq 5,$ and with add-back

• All transitions observed for the first time

⁴⁰ ₁₄ Si ₂₆	⁴¹ ₁₄ Si ₂₇	⁴² Si ₂₈
³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	41 13Al ₂₈

 $^{41}Al(C/C_2H_4,X)^{40}Al$ $^{41}Si(C/C_2H_4,X)^{40}Al$ $^{40}Al(C/C_2H_4,\gamma)^{40}Al$

Blue transitions from only singles spectra.

 $\begin{array}{c} & - & - & - & 424(27) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\$

 42 Si(C/C₂H₄, γ)⁴¹Al 41 Al(C/C₂H₄, γ)⁴¹Al

Blue transitions from only singles spectra.

Blue transitions from only singles spectra. Grey transition only from literature Stroberg et al. 2014.

Blue transitions from only singles spectra

			³² Ne	^{39,40,41} Al	Interpretation	Conclusion	
Odd-even	³⁹ Al and ⁴¹ Al re	esult summ	ary				

N = 20								N = 28
³⁷ ₁₇ Cl ₂₀	38 17 Cl ₂₁	39 17Cl ₂₂	40 17Cl ₂₃	41/Cl ₂₄	42 17Cl ₂₅	43 17Cl ₂₆	44Cl ₂₇	45 17Cl ₂₈
$^{36}_{16}\mathrm{S}_{20}$	$^{37}_{16}S_{21}$	$^{38}_{16}S_{22}$	³⁹ ₁₆ S ₂₃	$^{40}_{16}S_{24}$	${}^{41}_{16}\rm{S}_{25}$	$^{42}_{16}S_{26}$	$^{43}_{16}\mathrm{S}_{27}$	$^{44}_{16}S_{28}$
$^{35}_{15}\mathrm{P}_{20}$	³⁶ ₁₅ P ₂₁	³⁷ ₁₅ P ₂₂	38 15P23	³⁹ ₁₅ P ₂₄	⁴⁰ ₁₅ P ₂₅	⁴¹ ₁₅ P ₂₆	${}^{42}_{15}P_{27}$	$^{43}_{15}P_{28}$
$^{34}_{14}{ m Si}_{20}$	$^{35}_{14}{ m Si}_{21}$	³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	$^{38}_{14}{ m Si}_{24}$	³⁹ ₁₄ Si ₂₅	⁴⁰ ₁₄ Si ₂₆	$^{41}_{14}{\rm Si}_{27}$	$^{42}_{14}{\rm Si}_{28}$
$^{33}_{13}\mathrm{Al}_{20}$	³⁴ ₁₃ Al ₂₁	³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	37 13Al ₂₄	³⁸ ₁₃ Al ₂₅	³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈
$^{30}_{12}Mg_{20}$	$^{31}_{12}Mg_{21}$	³² ₁₂ Mg ₂₂	$^{33}_{12}Mg_{23}$	$^{34}_{12}Mg_{24}$	³⁵ ₁₂ Mg ₂₅	$^{36}_{12}Mg_{26}$	³⁷ ₁₂ Mg ₂₇	³⁸ ₁₂ Mg ₂₈

				^{39,40,41} Al	Interpretation	Conclusion	
Odd-even	³⁹ Al and ⁴¹ Al r	esult summ	nary				

N = 20								N = 28
³⁷ ₁₇ Cl ₂₀	38 17 Cl ₂₁	³⁹ ₁₇ Cl ₂₂	40 17Cl ₂₃	41/Cl ₂₄	42 17Cl ₂₅	43 17Cl ₂₆	44Cl ₂₇	45 17Cl ₂₈
$^{36}_{16}\mathrm{S}_{20}$	$^{37}_{16}S_{21}$	$^{38}_{16}S_{22}$	³⁹ ₁₆ S ₂₃	$^{40}_{16}S_{24}$	${}^{41}_{16}\rm{S}_{25}$	$^{42}_{16}S_{26}$	$^{43}_{16}\mathrm{S}_{27}$	⁴⁴ ₁₆ S ₂₈
$^{35}_{15}\mathrm{P}_{20}$	³⁶ ₁₅ P ₂₁	$^{37}_{15}P_{22}$	38 15P23	³⁹ ₁₅ P ₂₄	⁴⁰ ₁₅ P ₂₅	⁴¹ ₁₅ P ₂₆	${}^{42}_{15}P_{27}$	$^{43}_{15}P_{28}$
$^{34}_{14}{ m Si}_{20}$	$^{35}_{14}{ m Si}_{21}$	³⁶ ₁₄ Si ₂₂	³⁷ ₁₄ Si ₂₃	$^{38}_{14}{ m Si}_{24}$	³⁹ ₁₄ Si ₂₅	⁴⁰ ₁₄ Si ₂₆	$^{41}_{14}{\rm Si}_{27}$	⁴² ₁₄ Si ₂₈
$^{33}_{13}\mathrm{Al}_{20}$	³⁴ ₁₃ Al ₂₁	³⁵ ₁₃ Al ₂₂	³⁶ ₁₃ Al ₂₃	37 13Al ₂₄	³⁸ ₁₃ Al ₂₅	³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	$^{41}_{13}\rm{Al}_{28}$
$^{30}_{12}Mg_{20}$	$^{31}_{12}Mg_{21}$	$^{32}_{12}Mg_{22}$	$^{33}_{12}Mg_{23}$	$^{34}_{12}Mg_{24}$	³⁵ ₁₂ Mg ₂₅	$^{36}_{12}Mg_{26}$	³⁷ ₁₂ Mg ₂₇	³⁸ ₁₂ Mg ₂₈

- New tentative excited states added for odd-even ³⁹Al and ⁴¹Al
- Large drop (by half) in first excited state energy for ⁴¹Al
- Fingerprint of the shell effect in odd-even levels? Level densities at magic numbers...

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Odd-even ³⁹Al and ⁴¹Al shell model result summary

- Similar features between experimental level scheme and shell model predictions for both odd-even ³⁹Al and ⁴¹Al
- ³⁹Al and ⁴¹Al predicted with prolate $\beta \approx 0.35$ ground states by SDPF-MU
- Similar ground state deformation to ³⁸Mg & ⁴⁰Mg?
- Only structural information on ⁴⁰Mg from inclusive two-proton knockout cross section ⇒ suggests opposite configuration than ⁴²Si

Percentage probabilities of prolate and oblate ground state wave-functions. Results from a two-state mixing model from experimental two-proton cross section. Figure from Crawford et al. 2014. Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Mean field calculations and Nilsson model

Hartree-Fock-Bogoliubov mean-field calculated energy surfaces with the DIS Gogny effective interaction Berger, Girod, and Gogny 1991 from the AMEDEE database Hilaire and Girod 2007. The surfaces of Mg. Al, Si are offset for visualization.

One-particle energies for protons of the ${}^{40}_{12}Mg \otimes \pi$ system as a function of axially symmetric quadrupole deformation with the Woods-Saxon potential. I. Hamamoto private communication.

- Mean field calculation predicts $^{39}{\rm Al}$ prolate $\beta\approx 0.35$ and $^{41}{\rm Al}$ oblate $\beta\approx -0.35$
- Nilsson model suggests prolate for a ground state configuration of 5/2⁺_{g.s.}

- Large area of deformation investigated in neutron-rich ${}^{32}_{10}$ Ne and ${}^{39-41}_{13}$ Al
- First identification of $E(4_1^+)$ for ${}^{32}_{10}$ Ne and confirmation of $E(2_1^+)$
 - Energy of $E(4_1^+)$ and ratio $R_{4/2}$ reproduced by state-of-the-art shell model calculations
 - Continued trend of deformation of $^{32}_{10}$ Ne and confirmation of placement in *island of inversion*
- Contributions to knockout reaction cross section suppression ratios systematic trends

- New spectroscopic information of ³⁹₁₃Al and first spectroscopy of ⁴⁰₁₃Al and ⁴¹₁₃Al
- Tentative assignment of levels and agreement with shell model predictions ⇒ suggest prolate deformed ground states of ³⁹₁₃Al and ⁴¹₁₃Al
 - Suggests loss of N = 28 spherical shell closure in ${}^{41}_{13}$ Al
 - Might be a benchmark for theoretical predictions of ground state wave function (with near degenerate configurations)

Introduction

32Ne Experiment

I. Murray¹, M. MacCormick¹, D. Bazin², P. Doornenbal³, N. Aoi⁴, H. Baba³, H. Crawford⁵, P. Fallon⁵, K. Li³, J. Lee⁶, M. Matsushita³, T. Motobayashi³, T. Otsuka^{2 3 7}, H. Sakurai^{3 8}, H. Scheit⁹, D. Steppenbeck³, S. Takeuchi¹, J. A. Tostevin¹⁰, N. Tsunoda⁷, Y. Utsuno¹¹, H. Wang³, K. Yoneda³

39,40,41 Al Experiment

I. Murray¹, M. MacCormick¹, H. Crawford⁵, P. Fallon⁵, P. Doornenbal³, D. S. Ahn³, H. Baba³, S. Bagchi¹²,
D. Bazin², K. Behr¹², F. Browne³, S. Chen³, M. L. Cortés³, M. Cromaz⁵, A. Extade¹³, N. Fukuda³, H. Geissel¹²,
E. Haettner¹², M. Holl¹⁴, M. Jones⁵, N. Inabe³, K. Itahashi³, R. Kanungo¹⁵, S. Kaurlé, S. Matsumoto¹⁷, S. Momiya⁸,
T. Motobayashi³, T. Nakamura¹⁸, M. Niikura⁸, S. Paschalis¹⁹, M. Petri¹⁹, A. Prochazka¹², H. Sakurai³,
C. Scheidenberger¹², Y. Shimizu³, P. Schrock⁷, D. Steppenbeck³, M. Takechi²⁰, H. Takeda⁷, S. Takeuchi¹⁸,
Y. Tanaka¹², R. Taniuchi⁸, K. Wimmer⁷, K. Yoshida³

¹Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay Cedex 91406, France ²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ³RIKEN Nishina Center, Wako, Saitama 351-0198, Japan ⁴Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ⁵Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, United States ⁶The University of Hong Kong, Hong Kong ⁷Center for Nuclear Study (CNS), University of Tokyo, Wako-shi, Saitama 351-0198, Japan ⁸Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan 9Technische Universität Darmstadt, Darmstadt 64289, Germany ¹⁰Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ¹¹Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ¹²GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany 13 Central Michigan University, Michigan, USA 14TRIUME Vancouver, Canada 15 Saint Mary's University, Halifax, Nova Scotia, Canada 16 Dalhousie University, Halifax, Nova Scotia, Canada 17Kyoto University, Kyoto, Japan ¹⁸Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan ¹⁹University of York, UK 20 Niigata University, Niigata, Japan

			Conclusion	Backup

Odd-odd nuclei with high density of states

E_{γ} (keV)	Yield 100 ions
233(10)stat. (5)syst.	12(5)
276(10)stat. (5)syst.	12(5)
353(12) _{stat.} (5) _{syst.}	7(3)
516(32)stat. (5)syst.	5(3)
1186(21)stat. (5)syst.	9(4)

⁴⁰ ₁₄ Si ₂₆	⁴¹ Si ₂₇	⁴² ₁₄ Si ₂₈
³⁹ ₁₃ Al ₂₆	⁴⁰ ₁₃ Al ₂₇	⁴¹ ₁₃ Al ₂₈

Fit of ${\rm ^{41}Si(C/C_2H_4,X)^{40}Al}$ doppler reconstructed $\gamma\text{-ray energy spectrum},$ m_γ \leq 5, and with add-back

			^{39,40,41} Al	Conclusion	Backup
$^{41}\text{Al}(\text{C/C}_2\text{H})$	$_{4},X)^{40}Al$				

E_{γ} (keV)	Yield 100 ions
223(8)stat. (5)syst.	12(4)
270(5)stat. (5)syst.	18(4)
465(10)stat. (5)syst.	7(3)
532(10)stat. (5)syst.	14(3)
685(23)stat. (5)syst.	5(2)

⁴⁰ ₁₄ Si ₂₆	⁴¹ ₁₄ Si ₂₇	⁴² ₁₄ Si ₂₈
³⁹ ₁₃ Al ₂₆	40Al27	41 Al ₂₈

Fit of ${}^{41}\rm{Al}(C/C_2H_4,X){}^{40}\rm{Al}$ doppler reconstructed γ -ray energy spectrum, $m_\gamma \leq 5,$ and with add-back

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Detector array for low intensity radiation (DALI)

3D view of RIKEN DALI detector array

- 186 thallium-doped sodium iodine scintillator detectors
 - $\bullet~\approx 25\%$ full energy peak efficiency for 1 MeV
 - $\bullet~\approx 36\%$ with energy add-back procedure
- · Energy add-back procedure:
 - Recover full energy of $\gamma\text{-rays}$ when Compton scattered
 - Add detector responses within a given radius (15 cm)
 - · Radius centered by highest energy response
- GEANT4-based simulation for DALI responses to fit exp. data
 - Input: individual detector energy resolution, state lifetime, target, beam velocity

Introduction Exp. techniques Exp. setup ³²Ne Interpretation ^{39,40,41}Al Interpretation Conclusion Backup Ground state of ⁴²Si and ⁴⁰Mg

Cross section ratio,

$$\mathbf{R} = \frac{\sigma_{44 \to 42}(\mathbf{0}_1^+) + \sigma_{44 \to 42}(\mathbf{0}_2^+)}{\sigma_{42 \to 40}(\mathbf{0}_1^+)}$$

Wavefunctions,

f

$$\begin{split} |^{42}Si,0^+_1\rangle &= +\alpha \left|0^+;O\right\rangle + \beta \left|0^+;P\right\rangle \\ |^{42}Si,0^+_2\rangle &= -\beta \left|0^+;O\right\rangle + \alpha \left|0^+;P\right\rangle \\ |^{40}Mq,0^+_1\rangle &= \gamma \left|0^+;O\right\rangle + \delta \left|0^+;P\right\rangle \end{split}$$

Two-nucleon amplitudes (from wave functions by projection of the Nilsson and BCS wave functions onto angular momentum state),

$$\begin{split} T_{44\to42}(0^+_1) &= 0.35(\alpha T_{SO} + \beta T_{SP}) + 0.94(\alpha T_{PO} + \beta T_{PP}) \\ T_{44\to42}(0^+_2) &= 0.35(\alpha T_{SP} - \beta T_{SO}) + 0.94(\alpha T_{PP} - \beta T_{PO}) \\ T_{42\to40}(0^+_1) &= \alpha(\delta T_{OP} + \gamma T_{OO}) + \beta(\delta T_{PP} + \gamma T_{PO}) \end{split}$$

- With fixed quadrupole deformations of $|\beta_2| = 0.25, 0.35, 0.4$ for ⁴⁴S, ⁴²Si and ⁴⁰Mg
- Ground state wave-functions of ⁴²Si and ⁴⁰Mg must have opposite shapes

Percentage probabilities of prolate and oblate ground state wave-functions. Results from a two-state mixing model from experimental two-proton cross section. Figure from Crawford et al. 2014.

- Sudden (adiabatic) approximation: the relative motion of the residue and knockout nucleon are assumed to be *frozen in time* during the collision (of the order of 1×10^{-23} s)
- Eikonal approximation (forward scattering): for two colliding bodies the wavefunction is unchanged in space, except for the vanishing portion within a cylinder of the overlap with an effective absorption radius
 - Spectator-core approximation: core (reaction residue) is assumed to not participate in dynamic excitation during the reaction

Stripping (inelastic breakup) cross section,

$$\sigma_{stripping} = rac{1}{2j+1} \int dec{b} \sum_{m} \langle \psi_{jm} | \left(1 - |S_n|^2\right) |S_c|^2 | \psi_{jm}
angle$$

where S_n and S_c are the elastic S-matrices of the systems of reaction residue and target, and removed nucleon and target, respectively. The diffraction process (elastic breakup) cross section,

$$\sigma_{diffraction} = \frac{1}{2j+1} \sum_{\sigma,m} \int d\vec{k} \int d\vec{b} \sum_{m} \big| \left\langle \psi_{\vec{k}\sigma} \big| (1 - S_n S_c) \big| \psi_{jm} \right\rangle \big|^2$$

Data taken from Bazin et al. 2003; Fallon et al. 2010; Tostevin and Brown 2006

- Ratio of experimental to theoretical two-proton cross section additionally contributes to limited trend
- Similarity between shell model interactions related to similar two-nucleon amplitudes (TNAs)

			^{39,40,41} Al	Conclusion	Backup
Nilsson Dia	ıgram				

Table: 32,34 Mg and 30,32 Ne ground state neutron 0p-0h, 2p-2h and 4p-4h probabilties (%) calculated with the SDPF-M and EEDf1 interactions.

	SDPF-M			EEDf1		
	0p-0h	2p-2h	4p-4h	0p-0h	2p-2h	4p-4h
³² Mg	4.7	82.5	12.7	1.8	36.2	51.9
³⁰ Ne	3.9	74.1	22.0	0.5	19.8	68.1
³⁴ Mg	9.5	82.0	8.4	1.6	49.5	43.4
³² Ne	10.0	76.5	13.4	1.2	43.3	50.6

Experimental exclusive cross sections (σ) and theoretical predictions from shell model calculations. Exclusive theoretical cross sections are scaled by the inclusive R_i value for the visualization of the populated ratio. (a) Two-proton knockout reactions to $\frac{10}{10}$ Ne (b) Two-proton knockout reactions to $\frac{10}{10}$ Ne Fallon et al. 2010. The cross section to 2^+_1 was conjectured to be unobserved feeding from a 2^+_2 state. The combined cross section is also plotted. (c) One-proton knockout reactions to $\frac{30}{10}$ Ne.