Deviations from Hauser-Feshbach behaviour in evaporation chains in light heavy-ion collisions

Bologna-2018 European Nuclear Physics Conference

Catalin Frosin

NUCL-EX Collaboration

05 September 2018

イロト イポト イヨト イヨト

Physics Case: Light-HIC at low energy (< 15 MeV/u)

Physics Case: Light-HIC at low energy (< 15 MeV/u)

• NUCL-EX collaboration:

- 1²C+¹²C @ 95 MeV and ¹⁴N+¹⁰B @ 80.7 MeV
- 2 ¹²C+¹³C @ 95 MeV
- ¹⁶O+¹²C @ 90.5, 110 and 130 MeV
- ⁴Mg+^{12,13}C @ 162 and 142 MeV
- Excited CN nuclei: ^{24,25}Mg [A.Camaiani's talk], ²⁸Si and ^{36,37}Ar [S.Barlini's talk] @ 2-3 MeV/u

<ロト < 同ト < 回ト < 回ト = 三

• NUCL-EX collaboration:

- ¹²C+¹²C @ 95 MeV and ¹⁴N+¹⁰B @ 80.7 MeV
- ¹²C+¹³C @ 95 MeV
- ¹⁶O+¹²C @ 90.5, 110 and 130 MeV
- 4 ${}^{24}Mg+{}^{12,13}C @ 162 and 142 MeV$
- Excited CN nuclei: ^{24,25}Mg [A.Camaiani's talk], ²⁸Si and ^{36,37}Ar [S.Barlini's talk] @ 2-3 MeV/u
- Statistical decay properties of light nuclei by means of well constrained statistical decay models
- Search for non-statistical effects (dynamics and/or α-clustering)

- 32

3 N A 3 N

• NUCL-EX collaboration:

- ¹²C+¹²C @ 95 MeV and ¹⁴N+¹⁰B @ 80.7 MeV
- ² ¹²C+¹³C @ 95 MeV
- ⁶ ¹⁶O+¹²C @ 90.5, 110 and 130 MeV
- ${}^{\textcircled{4}}$ ${}^{24}Mg+{}^{12,13}C~@~162$ and 142 MeV
- Excited CN nuclei: ^{24,25}Mg [A.Camaiani's talk], ²⁸Si and ^{36,37}Ar [S.Barlini's talk] @ 2-3 MeV/u
- Statistical decay properties of light nuclei by means of well constrained statistical decay models
- Search for non-statistical effects (dynamics and/or α-clustering)
- (L. Morelli et. al., J. Phys. G: Nucl. Part. Phys. 41, 075107 & 075108, (2014)) → Predominance of α-particles emission in specific decay channels

K. Ikeda, Prog. Theor. Phys. 40, 277 (1968)

Statistical Decay Models

G.Baiocco, PhD Thesis (2012) & G.Baiocco et al., Phys. Rev.C87 054614 (2013)

• HF ℓ : evaporation of LCP (n, p, d, t, ³He, α) and ⁶Li,⁷Li is treated with the standard Hauser-Feshbach formalism of CN decay.

 \rightarrow transmission coefficients and Level Densities (LD) optimized for A<40

- \rightarrow information on measured excited levels from the NUDAT2
- Gemini++ (R. J. Charity et. al., J. Phys. Rev. C 82, 014610 (2010))

Experiment

Formation of the ²⁸Si Compound Nucleus

• Pulsed (about 1 ns resolution, 400 ns repetition period) ¹⁶O beam @ 90.5, 110 and 130 MeV with intesities of around 0.1 pnA on a ¹²C target at LNL. The employed apparatus was Garfield + Ring Counter (RCo) detectors.

Reaction	\mathbf{E}^*	J _{max}	V _{CN}	$\sigma_{\mathbf{F}}$	
	[MeV]	[ħ]	[cm/ns]	[mbarn]	
$^{16}O+^{12}C$	55	14	1.88	886	
$^{16}O+^{12}C$	63	16	2.08	841	
$^{16}\text{O}+^{12}\text{C}$	72	18	2.26	809	

Parameters calculated with PACE4 (cross-section from Bass model)

Experimental Apparatus

Event Selection

¹⁶O+¹²C @ 130 MeV

The results in the next slides are obtained with the Fusion-Evaporation selection $(Z_{tot} = 14 \& 0.8 < p_z/p_{beam} < 1.1)$

Charge Distribution

Distributions normalized to the number of events (\equiv evaporation residue number)

 \rightarrow Data points (Black Dots), HF ℓ (red line) and Gemini++ (green line)

Charge Distribution

Distributions normalized to the number of events (\equiv evaporation residue number)

 \rightarrow Data points (Black Dots), HF ℓ (red line) and Gemini++ (green line)

• Underestimation (HF ℓ) and overestimation (Gemini) of the yield for the IMF region \rightarrow For Gemini IMF (Z>3) emission is included: break-up contribution

• For some $Z \approx Z_{projectile} \rightarrow$ direct reaction contamination ?

Catalin Frosin (NUCL-EX Collaboration)

Image: A matrix

Inclusive Observables

Catalin Frosin (NUCL-EX Collaboration)

EuNPC-2018

Selection of decay channels

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Residue Velocity

(shape normalized spectra)

Catalin Frosin (NUCL-EX Collaboration)

EuNPC-2018

Residue Velocity

(shape normalized spectra)

Catalin Frosin (NUCL-EX Collaboration)

EuNPC-2018

05 September 2018 13 / 19

Residue Velocity

(shape normalized spectra)

Catalin Frosin (NUCL-EX Collaboration)

EuNPC-2018

05 September 2018 14 / 19

Proton Lab Energy

(shape normalized spectra)

э

→ E → < E →</p>

Alpha Lab Energy

(shape normalized spectra)

э

イロト イポト イヨト イヨト

Branching ratios of α -channels

		90.5 MeV(%)			110 MeV(%)			130 MeV(%)		
Zres	Channels	Exp	$HF\ell$	Gem	Exp	$HF\ell$	Gem	Exp	$\mathrm{HF}\ell$	Gem
6	$^{12-xn} ext{C+xn+4}lpha$	100	100	100	100	100	94	99	92	72
7	$^{15-xn}$ N+xn+p+3 $lpha$	100	100	94	98	99	96	95	97	95
8	$^{16-xn}$ O+xn+ 3α	100	99	91	99	87	63	88	43	31
9	$^{19-xn}\mathrm{F}$ +xn+p+ $2lpha$	99	99	99	93	93	96	88	89	83
10	$^{20-xn}$ Ne+xn+ 2α	74	17	13	45	6	9	29	2	4
11	$^{23-xn}$ Na+xn+p+ $lpha$	95	95	91	93	87	85	88	55	61
12	$^{24-xn}$ Mg+xn+ $lpha$	53	11	18	35	5	8	28	3	3

- Major error contribution from bad identification (p-d-t and ${}^{3}He-\alpha$) around 5% for each channel.
- For many even- Z_{res} we found clear deviations from HF ℓ and Gemini (rather similar results for both codes).
- BR differences change with energy: e.g Oxygen (Z_{res}=8).

э

Branching ratios of α -channels

		90.5 MeV(%)			110 MeV(%)			130 MeV(%)		
Zres	Channels	Exp	$\mathbf{HF}\ell$	Gem	Exp	$\mathbf{HF}\ell$	Gem	Exp	$\mathrm{HF}\ell$	Gem
6	$^{12-xn} ext{C+xn+4}lpha$	100	100	100	100	100	94	99	92	72
7	$^{15-xn}$ N+xn+p+3 $lpha$	100	100	94	98	99	96	95	97	95
8	$^{16-xn}$ O+xn+ 3α	100	99	91	99	87	63	88	43	31
9	$^{19-xn}$ F+xn+p+2 $lpha$	99	99	99	93	93	96	88	89	83
10	$^{20-xn}$ Ne+xn+ 2α	74	17	13	45	6	9	29	2	4
11	$^{23-xn}$ Na+xn+p+ $lpha$	95	95	91	93	87	85	88	55	61
12	$^{24-xn}$ Mg+xn+ $lpha$	53	11	18	35	5	8	28	3	3

- Major error contribution from bad identification (p-d-t and ${}^{3}He-\alpha$) around 5% for each channel.
- For many even- Z_{res} we found clear deviations from HF ℓ and Gemini (rather similar results for both codes).
- BR differences change with energy: e.g Oxygen (Z_{res}=8).

3

Conclusions

Summary

- F-E in the ¹⁶O+¹²C reaction @ 90.5, 110 and 130 MeV.
- Comparison with two statistical decay models:
 - $\textcircled{0} \hspace{0.1in} HF\ell \hspace{0.1in} and \hspace{0.1in} Gemini++ \hspace{0.1in} show \hspace{0.1in} rather \hspace{0.1in} similar \hspace{0.1in} results$
 - 2 Overall good reproduction of the shape of inclusive observables (e.g. proton and α energy distributions)
 - $\textcircled{0} Overall good reproduction of the shape of exclusive observables (e.g residue velocity and LCP energy spectra) is achieved for HF\ell in particular$
 - Clear deviations in the branching ratios for even-Z residue channels while odd-Z are very well reproduced

< 回 > (四) (1)

Conclusions

Conclusions

Summary

- F-E in the ¹⁶O+¹²C reaction @ 90.5, 110 and 130 MeV.
- Comparison with two statistical decay models:
 - IF HF and Gemini++ show rather similar results
 - 2 Overall good reproduction of the shape of inclusive observables (e.g. proton and α energy distributions)
 - $\textcircled{0} Overall good reproduction of the shape of exclusive observables (e.g residue velocity and LCP energy spectra) is achieved for HF\ell in particular$
 - Clear deviations in the branching ratios for even-Z residue channels while odd-Z are very well reproduced

What comes next?

• Study of channels of particular interest: investigate the nature of the observed differences (α-clustering or dynamical effects) and their energy dependence

- 2

イロト イポト イヨト イヨト