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Outlook

1. Feynman’s Continual Integrals (FCI) method for solving N-body

ground state problem was implemented using parallel computing and

tested for exactly solvable models with N=3,4,5,6,7.

2. Spline approximation was applied for solving the system of

hyperradial equations in Hyperspherical Functions (HSF) method. The

calculation of coupling matrices was implemented using parallel

computing.

3. 3-body systems: 3H, 3,6He, 11Li, 9Be, 12C with universal nucleon-

nucleon, nucleon-α-cluster and α-cluster-α-cluster interactions were

studied using both methods: FCI and HSF.

4. 4-body systems 4He, 7Li, 16O with universal nucleon-nucleon, nucleon-

α-cluster and α-cluster-α-cluster interactions were studied using FCI

method.



1.1. Feynman’s continual integrals (FCI) method

Feynman’s continual integral [1] is propagator - probability amplitude for a particle 
to travel from one point to another in a given time t

Euclidean time t=−iτ

Parallel calculations by Monte Carlo method [3]
using NVIDIA CUDA technology

were performed on cluster http://hybrilit.jinr.ru

[1] R. P. Feynman, A. R. Hibbs. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965.
[2] D. I. Blokhintsev. Principles of Quantum Mechanics [in Russian]. Moscow, Nauka, 1976.
[3] S. M. Ermakov. Monte Carlo Method in Computational Mathematics [in Russian]. St. Petersburg, Nevskiy Dialekt, 2009.
[4] M. A. Naumenko, V. V. Samarin. Supercomp. Front. Innov. 3, No. 2,  80. (2016). 
[5] V. V. Samarin, M. A. Naumenko. Phys. Atom. Nucl., 80, 877(2017).
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Algorithm is averaging over random trajectories with distribution in form of 

multidimensional Gaussian distribution [4, 5]. 
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1.2. Hardware, software, implementation

• NVIDIA Tesla K40 (for calculation) 
NVIDIA Quadro 600, GeForce 920 (for debugging)

• Intel® Core™ i5 (for debugging, comparing, and testing)

• Heterogeneous Cluster (http://hybrilit.jinr.ru/)
(LIT, Joint Institute for Nuclear Research)

• Implemented in C++ language
(single precision)

• Code compiled
for architecture CUDA, CUDA Toolkit + Microsoft Visual Studio 
(Windows 7,10 for debugging);
for architecture CUDA (Linux, for calculation), 

• cuRAND random number generator

• 1 thread calculates 1 trajectory
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 Calculations of KE is implemented using 
parallel computing

http://hybrilit.jinr.ru/


1.3. Calculations for exactly solvable N-body oscillator models
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E 0 0ln , ; ,0 ln ( ) ,  ,EK q q q   −   → 

N, U0 Exact value E0 Calculated value E0

N=3, U0=0 4.098 4.117±0.006

N=4, U0=15 − 6 −5.98±0.02

N=5, U0=20 −6.584 6.56±0.05

N=6, U0=20 −1.629 − 1.84±0.01

N=7, U0=20 3.812 3.63±0.01

Jacobi coordinates:
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N=3 N=4 N=5 N=6 N=7

Feynman’s continual integrals (FCI)

Monte-Carlo calculation with statistics

n=107.

FCI method reproduces exact result.

Exact value: 

The slope of resulting straight lines equals the energy of the ground state
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1.4. FCI calculations for “exactly” solvable 5-body nucleon model

In the system of the particles with masses m1= m2=m3= m4= m, m5= , light particles 1, 2, 3, 4 interact only 
with heavy particle 5 by nucleon-nucleon potential having repulsive core.

FCI calculation with

statistics N=3107

reproduces exact result
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=
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0 16 MeVE = −

The radial Schrödinger equation
was solved “exactly” by difference
scheme for 2-body system 1 and 5
particles. The energy is equal to −4 MeV

The energy of the independent light particles 1, 2, 3, 4
in the field of  heavy particle 5 is equal to the sum
of  energies of particles 1, 2, 3 and 4:
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0 02412,  1 MeV,  1 fm,

1.57 10  s,

,   ,  

 is the neutron mass
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t E E

m

−
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exact result

E0=−15.91±0.46

13 24
1 1 1 2 ,  1 1 1 2M m m m M m m m= + = = + =

12341 1 2 1 2 1m m m = + =

13 24 2M M m= =

1234 m =

Jacobi coordinates: 
X, Y, Z, T

123451 1 4m = 12345 4m =
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2.1. HSF basics: description of 3-body system
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The hyperspherical harmonics (functions) [1] are

[1] R.I. Dzhibuti and K.V. Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. 

(Energoatomizdat, Moscow. 1993, in Russian).
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coupling matrix

ρ is the hyperradius.
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2.2. HSF basics: methods of solving hyperradial equations [1]

[1] R.I. Dzhibuti and K.V. Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. 

(Energoatomizdat, Moscow. 1993, in Russian).

[2] M.I. Haftel, V.B. Mandelzweig, Ann. Phys. 150, No 1, 48−91 (1983).

[3] J.A. Mignaco, I. Roditi. J. Phys. Atom. And Mol. Phys. B14 N 2 L161−L166 (1981).

[4] V.D. Efros, A.M. Frolov, M.I. Mikhtarova, J. Phys. Atom. And Mol. Phys. B15 N 2 L819−L825 (1982).

[5] P. Descouvemont C. Daniel and D. Baye, Three-body Systems with Lagrange-mesh Techniques in Hyperspherical

Coordinates, Phys. Rev. C  67, 044309 (2003).

[6] G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980, in Russian).

There are several methods for solving hyperradial equations:

power expansion [2], artificial hyperradial basis [3, 4], basis of 

Lagrange functions [5].

New method using cubic spline approximation [6] is proposed.
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2.3. New in HSF: solving hyperradial equations using cubic splines
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For equidistant mesh

(+) symmetric matrix B,

(+) for ground and exited 

states calculation,

(−) large size of matrix.

(+) small size of matrix for

special mesh choice and

fast calculation for

ground state only,

(−) unsymmetric matrix B.

the smooth interpolation

between mesh points

Energies are eigenvalues of matrix B [2].

Wave functions are eigenvectors of matrix B [2].

1.  G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980).

2.  J.H. Wilkinson, C. Reinsch. Handbook for Automatic Computation. Linear 

Algebra.

The idea of this method is simultaneous

calculation of the mesh function φi

and its second derivative mi .

Advantages (+) and

disadvantages (−):

In the general case for 

arbitrary mesh;

[1]
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2.4. HSF test: Exactly solvable 3-Body harmonic oscillator (HO) models

Three particles with masses m1=m3=m, m2= interact with each other by oscillator potentials:
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Normalized Jacobi coordinates {x,y}:

The frequencies of the normal modes are

equal to Ω1, Ω2.
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HSF+spline

algorithm has

fast converge

for increasing 

Kmax value

Kmax (max =5, =0.05) E0

6 4.1082

8 4.0992

14 4.0988

16 4.0988

Kmax (max =10, =0.05) E0

6 4.31187

8 4.3071

12 4.3070

16 4.3070

For instance:
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3.1. FCI &  HSF calculations for “exactly” solvable 3-Body 

nucleon model: algorithm convergence

In the system of the particles with masses m1=m3=m, m2= , light particles 1, 3 interact only with heavy 
particle 2 by nucleon-nucleon potential having repulsive core.

1 1 1 2m m m = + = 1 1 1 2 1 2M m m=  + =

2m = 2M m=

3 1 2= − =R r r x
1

2
=r y

FCI calculation with

statistics N=7107

Hyperspherical functions 

(HSF+spline):

Kmax (max =10, 
=h=0.1)

E0

6 -6.350

16 -7.616

24 -7.861

32 -7.942

40 -7.970

48 -7.973

56 -7.981

Normalized Jacobi coordinates:
( )

3
2 2

12 23

1

( ) ( ) expk k

k

V r V r u r b
=

 = −

0 8 MeVE = −

The radial Schrödinger equation
was solved “exactly” by difference
scheme for 2-body system 1 and 2
particles. The energy is equal to −4 MeV

The energy of the independent light particles 1, 3 in
the field of  heavy particle 2 is equal to the sum of 
energies of particles 1 and 2,

Both methods reproduce
exact result
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1.57 10  s,
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exact result



3.2. Unified set of effective two-body central potentials
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Model parameters
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U1 = -76 MeV, R1 = 2.05 fm, а1 = 0.3 fm;

U2 = 62 MeV, R2 =  1.32 fm, а2 = 0.3 fm;

U3 = 112 MeV, R3 =  1 fm, а3 = 0.5 fm.

Nucleon-nucleon Nucleon-alpha-cluster

Rα = 1.6755 fm;
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i=1

i=1,2

i=1,2,3
The repulsive core is the 

typical property of 

nucleon-nucleon, 
nucleon-cluster and 

cluster-cluster potentials



3.3. Results of calculation of binding energies for nuclei 2H, 3,4,6He, 
6Li, 9Be with unified set of effective two-body central potentials

13

Comparison of theoretical and experimental binding energies
in unified set of potentials

(*for alpha-cluster nuclei 6He, 6Li, 9Be energy of separation into 
alpha particles and nucleons is given).

( )
21

0 0 0ln , ; ,0 ln ( ) ,  Eb K q q Eq−  →  −   → 

slope coefficient gives ground state 
energy

Atomic

nucleus

Theoretical value, 

MeV

Experimental value [1], 

MeV

2H 2.22 ± 0.15 2.225

3H 8.21 ± 0.3 8.482

3He 7.37 ± 0.3 7.718

4He 30.60 ± 1.0 28.296

6He* 0.96 ± 0.05 0.97542

6Li* 3.87 ± 0.2 3.637

9Be* 1.573 1.7 ± 0.1

[1] NRV web knowledge base on low-energy nuclear physics. URL: http://nrv.jinr.ru/

Good agreement with experimental data

6Li
6He

4He 2H

9Be

3H 3He
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3.4. − potential V−(r) and ground state energy E0 of 
12C ( +  + ) and 16O ( +  +  + )

Experimental breakup energy is equal to
7.37 MeV for 12C and 14.53 MeV for 16O.

~

0 0
C( ) ( )

1 exp 1 expV W

V U
V r V r

r R r R

a b

− = − +
− −   

+ +   
   

Energy of breakup into -particles is 
equal to -E0 , where E0 is the energy 
of the ground state of
-cluster system.

( )
2

0 0

0 0

1 1
ln , ; ,0 ln ( ) ,  EK q q q E

b b
 →  −   → 

The slope of resulting straight lines equals the energy of the ground state

0

12C: E0=−7.39 MeV

16O: E0=−14.52 MeV

2 23

0 0 0 0 0 0 0 0

0 0 0 0 0

0 02412,  1 MeV, 1 fm,  1.57 10  s,

,   ,   is the neutron mass

b t . x t m x

t E E m

−=    = = =  

 =  = 
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3.5. Calculations for 3H nucleus: FCI & HSF algorithms 

convergence

Hyperspherical Functions (HSF+spline): 

Kmax (max =10, 
=0.05)

E0

6 -7,153

8 -8,480

16 -8,134

24 -8,330

32 -7.384

40 -8.407

48 -8.417

Coul

( ),  aver

(

( ) ( )

age

)n n

p

n

p

p

V r V r

r

r

V

V

−

−

− +

FCI: Monte-Carlo
calculation
with statistics
N=7107

( )
21

0 0 0ln , ; ,0 ln ( ) ,  Eb K q q q E−  →  −   → 

0 0 0 0 0

2 23

0 0 0 0 0 0 0

0

0 02412,  1 MeV, 1 fm,

1.57 10  s, ,   ,  

 is the neutron mass

b t . x

t m x t E E

m

−

=    = =

=    =  = 

−E0exp=8.482  MeV

−E0exp=8.482 MeV

Both methods reproduce the experimental result



16

3.6. HSF algorithm convergence

−E0exp=8.482 MeV

HSF+spline method 
reproduces 
the experimental result

Kmax=4

Calculations for 3He nucleus

Kmax=6

−E0exp=7.718 MeV

Calculations for 3H nucleus:
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3.7. FCI: Propagator KE and probability density |Ψ0|
2 for

ground state of 3He (p + p + n)

Probability density ||2 is consistent with potential landscape

( )
2 20 1

E 0 1, , ; , ,0 ( , , ) exp ( , , ) exp ,  
E E

K
    

 →  − +  − +  →   
  

x y x y x y x y

Potential wall at ri =5 fm for excluding excitation of breakup states.

Logarithmic

scale

Potential wall for exclusion of

the excitation of break-up states
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3.8. FCI 3-body: Comparison of the probability densities ||2 for 

ground states of 6Li ( + n + p) and 6He ( + n + n) 

The probability density |0|
2 for the 6He nucleus and the 

vectors in the Jacobi coordinates; neutrons and
α-clusters are denoted as small empty circles and large 

filled circles, respectively. The most probable 
configurations are α-cluster + dineutron (1) and the cigar 
configuration (2). The configuration n + 5He (3) 
has low probability [1,2]; E+n+n,sep=0.98 MeV.

The probability density |0|
2 for the 6Li nucleus and

the vectors in the Jacobi coordinates; neutrons and
α-clusters are denoted as small empty circles and large 

filled circles, protons are denoted as small
filled circles. The only one possible configuration is 
α-cluster + deuteron-cluster [1,2];
E+n+p,sep=3.64 MeV.

Logarithmic
scale

[1] V. Samarin et al., Proc. Int. Symp. on Exotic Nuclei. (Kazan, Russia, Sept. 2016) World Scientific.    Singapore.  
p. 93 (2017).
[2] V. Samarin et al., Phys. Atom. Nucl., 80, 928 (2017).

Feynman’s Continual Integrals (FCI) method [1,2] was used. 
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3.9. Comparison of the probability densities ||2 for ground states of
11Li (9Li } + n + n ) and 6He ( + n + n)

The probability density |0|
2 for the 6He nucleus and the 

vectors in the Jacobi coordinates; neutrons and
α-clusters are denoted as small empty circles and large 

filled circles, respectively. The most probable 
configurations are α-cluster + dineutron (1) and the cigar 
configuration (2). The configuration n + 5He (3) 
has low probability; E+n+n,sep=0.98 MeV

[1] V. Samarin et al., Book of Abstracts of LXVIII Int. Conf. Nucleus-2018 (Voronezh, Russia, July 2018). Saint-
Petersburg (2018).

The probability density |0|
2 for the 11Li nucleus 

(configuration {9Li} + n + n) and the vectors in the Jacobi 
coordinates; neutrons and 9Li-core are denoted as small 
empty circles and large filled circles, respectively. The most 
probable configurations are {9Li} + di-neutron (1) and the 
cigar configuration (2).
The configuration 10Li + n (3) has low probability;
E{9Li}+n+n,sep=0.37 MeV [1].

Central and far 
parts of halo 
are mainly 
composed of 
loose 
di-neutron 
cluster.

Approximation of independent outer neutrons of 9Li and 11Li was used. 
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3.10. FCI 3-body: Probability density ||2 for ground state of 
9Be ( +  + n)

The probability density |0|
2 for the 9Be nuclei and the vectors in the Jacobi 

coordinates. The most probable configuration is α + n + α (1). The configurations 

α + 5He (2) and n + 8Be (3) are less probable.

Logarithmic

scale
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3.11. FCI 3-body: Probability density ||2 for ground state of
12C ( +  + )

The probability density |0|
2 for the 12C nucleus and the vectors in the Jacobi coordinates. The 

alpha-particle clusters being considered are represented by circles of radius equal to the root-

mean-square radius of the 4Не nucleus (1.7 fm). A regular triangle configuration is the most 

probable, a linear configuration having a low probability.

Logarithmic

scale
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3.12. Calculations for 12C (++) nucleus: 

probability density for ground state
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FCI & HSF
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Hyperspherical functions (HSF+spline):
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3.13. HSF calculations for 12C (++) nucleus: 

probability density for excited state with L=0 (Hoyle state)
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The probability density ||2 for the first excited state with total orbital angular momentum L=0 

(Hoyle state) of the 12C nucleus and the normalized vectors in the Jacobi coordinates. The alpha-

particle clusters being considered are represented by circles of radius equal to the root-mean-

square radius of the 4Не nucleus (1.7 fm). A linear configuration (1) is the most probable, a 

triangle configuration (2) (8Be + 4He) has a low probability.
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The calculated value of 1− 0=5.38 MeV is less then experimental value 7.65 MeV

1

2 2


Normalized Jacobi
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Hyperspherical functions (HSF+spline):
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4.1. FCI 4-body: Probability density for ground state of 
4He nucleus (p + p + n + n)

Logarithmic

scale

parallel shift of R2

Jacobi 

coordinates

(R1, r, R2)
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4.2. Comparison of the probability densities ||2 for ground states of
6Li ( + n + p) and 7Li ( + n + n + p) 

The probability density |0|
2 for the 7Li nucleus and the 

vectors in the Jacobi coordinates. The most probable 
configurations are α-cluster + triton [2] ; 
E+n+n+p,sep=10.95 MeV, E+t,sep=2.47 MeV

The probability density |0|
2 for the 6Li nucleus and

the vectors in the Jacobi coordinates; neutrons and
α-clusters are denoted as small empty circles and large filled 
circles, protons are denoted as small
filled circles. The only one possible configuration is 
α-cluster + deuteron-cluster [1];
E+n+p,sep=3.64 MeV, E+d,sep=1.47 MeV.

Logarithmic
scale

[1] V. Samarin et al., Proc. Int. Symp. on Exotic Nuclei. (Kazan, Russia, Sept. 2016) World Scientific.    Singapore.  p. 93(2017).
[2] V. Samarin et al., Book of Abstracts of LXVIII Int. Conf. Nucleus-2018 (Voronezh, Russia, July 2018). Saint-Petersburg (2018).

[3] V. Samarin NUCLEAR THEORY, Vol. 36 (2017) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia p. 233.
[4] V. Samarin et al., Phys. Atom. Nucl., 80, 928 (2017).

6Li 7Li 4He and -cluster

Feynman’s Continual Integrals (FCI) method [1-4] was used. 

The outer neutrons in 6Li and 7Li are  

bound in the positively-charged deuteron 

and triton clusters.
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4.3. FCI 4-body: Probability density for ground state of 16O ( +  +  + )

Logarithmic

scale

parallel shift of R2
rotation of R2

Jacobi 

coordinates

(R1, r, R2)

This region is

important for

the description

of the alpha-

cluster transfer

reactions.

This region is important for the description of the one-

and two-alpha-cluster transfer reactions and resonances.
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4.4. HSF basics: description of 4-body system
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The hyperspherical functions are:

[1] R.I. Dzhibuti and K.V. Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. 

(Energoatomizdat, Moscow. 1993, in Russian).

( )1 3
3 1

1 3

,
m m

m m
= −

+
x r r

1 2 3

( )i j k j j k k

i i

j k

m m m m m

m m m m m

 +
= −  + + + 

r + r
y r +

The “normalized” Jacobi coordinates (xi,yi) are:

The hyperspherical coordinates are:  , , , , , , , , ; =         
x x y y z z

2 2 2 2 ,  sin cos ,  sin sin , cos = + + =    =    =  x y z x y z

is hypermoment, n,m=0,1,2….

The hyperradial equations are:

The coupling matrix is

ρ is the hyperradius.
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The calculation of coupling matrices was 

implemented using parallel computing.

They are solved using cubic spline approximation

12 13 14 23 24 34U V V V V V V= + + + + +



Four particles with masses m1=m2=m3=m4=m interact each with other by oscillator potentials:
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Energies:

Feynman’s continual integrals (FCI)

Monte-Carlo calculation with statistics

N=7107.

Exact value U0=0, E0=9; U0=15, E0=−15+9=−6
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4.5. Test for exactly solvable 4-body oscillator model: HSF & FCI
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Exact value E0=9

calculated

points with

step =0.5

 

Calculated value E0=9.13 Calculated value E1=13.6

Exact value E1=13

For instance:



Exact value 

spline
Calculated value E0=₋5.98

HSF+spline and FCI method reproduce accurate results.
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Summary

1. Feynman’s continual integrals method in Euclidean time was used for
calculation of energies and wave functions of the ground states of light
nuclei 3H, 3,4He 6He,6,7,11Li, 9Be, 12C, 16O.

2. The agreement with the experimental data on binding energies was
achieved using the nucleon-nucleon interaction potentials similar to the
M3Y potential and nucleon-cluster and cluster-cluster potentials in the
forms of the superposition of the Woods-Saxon type functions.

3. The correctness of calculations was checked by comparison with the
results of the expansion in hyperspherical functions.

4. New effective method for the solution of the system of hyperradial

equations using cubic splines is proposed.
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