Study of Few-Body Nuclei by
 Feynman's Continual Integrals and Hyperspherical Functions

V.V. Samarin, M.A. Naumenko

FLEROV LABORATORY of NUCLEAR REACTIONS
Joint Institute for Nuclear Research, Dubna, Russia

European Nuclear Physics Conference, Bologna, September 2018

Outlook

1. Feynman's Continual Integrals (FCl) method for solving \mathbf{N}-body ground state problem was implemented using parallel computing and tested for exactly solvable models with $N=3,4,5,6,7$.
2. Spline approximation was applied for solving the system of hyperradial equations in Hyperspherical Functions (HSF) method. The calculation of coupling matrices was implemented using parallel computing.
3. 3-body systems: ${ }^{3} \mathrm{H},{ }^{3,6} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C}$ with universal nucleonnucleon, nucleon- α-cluster and α-cluster- α-cluster interactions were studied using both methods: FCl and HSF.
4. 4-body systems ${ }^{4} \mathrm{He},{ }^{7} \mathrm{Li},{ }^{16} \mathrm{O}$ with universal nucleon-nucleon, nucleon-α-cluster and α-cluster- α-cluster interactions were studied using FCl method.

1.1. Feynman's continual integrals (FCI) method

Feynman's continual integral [1] is propagator - probability amplitude for a particle to travel from one point to another in a given time t

$$
K\left(q, t ; q_{0}, 0\right)=\int D q\left(t^{\prime}\right) \exp \left\{\frac{i}{\hbar} S\left[q\left(t^{\prime}\right)\right]\right\}=\langle q| \exp \left(-\frac{i}{\hbar} \hat{H} t\right)\left|q_{0}\right\rangle
$$

Euclidean time $t=-i \tau$

$K_{\mathrm{E}}\left(q, \tau ; q_{0}, 0\right)=\lim _{\substack{N \rightarrow \infty \\ N \Delta \tau=\tau}}\left(\frac{m}{2 \pi \hbar \Delta \tau}\right)^{N / 2} \times$
$\times \int \cdots \int \exp \left\{-\frac{1}{\hbar} \sum_{k=1}^{N}\left[\frac{m\left(q_{k}-q_{k-1}\right)^{2}}{2 \Delta \tau}+U\left(q_{k}\right) \Delta \tau\right]\right\} d q_{1} d q_{2} \ldots d q_{N-1}$ $K_{E}(q, \tau ; q, 0) \rightarrow\left|\Psi_{0}(q)\right|^{2} \exp \left(-\frac{E_{0} \tau}{\hbar}\right), \tau \rightarrow \infty$
Parallel calculations by Monte Carlo method [3] using NVIDIA CUDA technology
were performed on cluster http://hybrilit.jinr.ru

$$
K_{\mathrm{E}}\left(q_{0}, \tau ; q_{0}, 0\right) \approx\left(\frac{m}{2 \pi \hbar \tau}\right)^{1 / 2}\left\langle\exp \left[-\frac{\Delta \tau}{\hbar} \sum_{k=1}^{N} U\left(q_{k}\right)\right]\right\rangle, \quad\langle F\rangle \approx \frac{1}{n} \sum_{i=1}^{n} F_{i}
$$

Algorithm is averaging over random trajectories with distribution in form of multidimensional Gaussian distribution [4, 5].

Example of three random trajectories

$$
N=1200 . \quad n=3
$$

[1] R. P. Feynman, A. R. Hibbs. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965.
[2] D. I. Blokhintsev. Principles of Quantum Mechanics [in Russian]. Moscow, Nauka, 1976.
[3] S. M. Ermakov. Monte Carlo Method in Computational Mathematics [in Russian]. St. Petersburg, Nevskiy Dialekt, 2009.
[4] M. A. Naumenko, V. V. Samarin. Supercomp. Front. Innov. 3, No. 2, 80. (2016).
[5] V. V. Samarin, M. A. Naumenko. Phys. Atom. Nucl., 80, 877(2017).

1.2. Hardware, software, implementation

$K_{\mathrm{E}}\left(q_{0}, \tau ; q_{0}, 0\right) \approx\left(\frac{m}{2 \pi \hbar \tau}\right)^{1 / 2}\left\langle\exp \left[-\frac{\Delta \tau}{\hbar} \sum_{k=1}^{N} U\left(q_{k}\right)\right]\right\rangle$
Calculations of K_{E} is implemented using parallel computing

- NVIDIA Tesla K40 (for calculation)

NVIDIA Quadro 600, GeForce 920 (for debugging)

- Intel ${ }^{\circledR}$ Core $^{\text {TM }}$ i5 (for debugging, comparing, and testing)
- Heterogeneous Cluster (http://hybrilit.jinr.ru/)

hYBRI | ||||||||

 (LIT, Joint Institute for Nuclear Research)- Implemented in C++ language (single precision)
- Code compiled

Visport ${ }^{\text {Mis }}$ for architecture CUDA, CUDA Toolkit + Microsoft Visual Studio (Windows 7,10 for debugging);
for architecture CUDA (Linux, for calculation),

- cuRAND random number generator
- 1 thread calculates 1 trajectory

1.3. Calculations for exactly solvable N-body oscillator models

The slope of resulting straight lines equals the energy of the ground state
$\ln K_{\mathrm{E}}(q, \tau ; q, 0) \approx \ln \left|\Psi_{0}(q)\right|^{2}-E_{0} \tau, \tau \rightarrow \infty$,

Feynman's continual integrals (FCI)
Monte-Carlo calculation with statistics $n=10^{7}$.
FCI method reproduces exact result.
N, U_{0}
Exact value E_{0}

$$
N=3, U_{0}=0
$$

Calculated value E_{0}

$$
4.098
$$

$$
N=4, U_{0}=15
$$

$$
-6
$$

$$
\begin{aligned}
& N=5, U_{0}=20 \\
& N=6 . U_{n}=20
\end{aligned}
$$

$$
-6.584
$$

$$
-1.629
$$

$$
4.117 \pm 0.006
$$

$$
-5.98 \pm 0.02
$$

6.56 ± 0.05
-1.84 ± 0.01

$$
3.812
$$

1.4. FCI calculations for "exactly" solvable 5-body nucleon model

In the system of the particles with masses $m_{1}=m_{2}=m_{3}=m_{4}=m, m_{5}=\infty$, light particles $1,2,3,4$ interact only with heavy particle 5 by nucleon-nucleon potential having repulsive core. Jacobi coordinates:

$$
V_{12}(r) \equiv V_{23}(r)=\sum_{k=1}^{3} u_{k} \exp \left(-r^{2} / b_{k}^{2}\right)
$$

$\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}$

The radial Schrödinger equation was solved "exactly" by difference scheme for 2 -body system 1 and 5 particles. The energy is equal to -4 MeV

The energy of the independent light particles 1, 2, 3, 4 in the field of heavy particle 5 is equal to the sum of energies of particles $1,2,3$ and 4 :

$$
b_{0}^{-1} \ln K_{E}(q, \tau ; q, 0) \rightarrow \ln \left|\Psi_{0}(q)\right|^{2}-\tilde{E}_{0} \tilde{\tau}
$$

FCI calculation with statistics $N=3 \cdot 10^{7}$
reproduces exact result

2.1. HSF basics: description of 3-body system

The "normalized" Jacobi
coordinates $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$ are: $\mathbf{x}_{i}=\sqrt{\frac{m_{j} m_{k}}{m_{j}+m_{k}}}\left(\mathbf{r}_{j}-\mathbf{r}_{k}\right), \mathbf{y}_{i}=\sqrt{\frac{m_{i}\left(m_{j}+m_{k}\right)}{m_{1}+m_{2}+m_{3}}}\left(-\mathbf{r}_{i}+\frac{m_{j} \mathbf{r}_{j}+m_{k} \mathbf{r}_{k}}{m_{j}+m_{k}}\right)$
The hyperspherical coordinates are $\Omega=\left\{\theta_{\mathrm{x}}, \varphi_{\mathrm{x}}, \theta_{\mathrm{y}}, \varphi_{\mathrm{y}}, \alpha\right\}, \rho$;

$$
\rho^{2}=\mathbf{x}^{2}+\mathbf{y}^{2},|\mathbf{x}|=\rho \cos \alpha,|\mathbf{y}|=\rho \sin \alpha \quad \rho \text { is the hyperradius. }
$$

The hyperspherical harmonics (functions) [1] are $\quad \Phi_{K L M}^{l_{x} l_{y}}(\Omega)$,
$\Phi_{K L M}^{l_{x} l_{y}}(\Omega)=\sum_{m_{x} m_{y}}\left(l_{x} l_{y} m_{x} m_{y} \mid L M\right) \Phi^{l_{x} l_{y} m_{x} m_{y}}(\Omega),\left(l_{x_{i}} l_{y_{i}} m_{x_{i}} m_{y_{i}} \mid L M\right) \quad \begin{aligned} & \text { are the Cleb } \\ & \text { coefficients }\end{aligned}$ $\Phi_{K}^{l_{K}^{l_{y} m_{x} m_{y}}}(\Omega)=g_{K}^{l_{x} l_{y}}(\alpha) Y_{l_{x} m_{x}}(\hat{\mathbf{x}}) Y_{l_{y} m_{y}}(\hat{\mathbf{y}}), g_{K 0}^{l_{x}^{l_{x}}}(\alpha)=N_{K}^{l_{x}^{l_{x}}}(\cos \alpha)^{l_{x}}(\sin \alpha)^{l_{x}} P_{n}^{l_{x}+1 / 2, l_{x}+1 / 2}(\cos 2 \alpha)$, $Y_{l_{x} m_{x}}(\hat{\mathbf{x}}), \quad Y_{l_{y} m_{y}}(\hat{\mathbf{y}}) \quad$ are spherical harmonics, $\quad P_{n}^{l_{y}+1 / 2, l_{x}+1 / 2}(t) \quad$ are the Jacobi polynomials $K=2 n+l_{x_{i}}+l_{y_{i}}$ is hypermoment, $n=0,1,2 \ldots \Phi_{K 00}^{l_{x} l_{x}}(\Omega) \equiv\left|l_{x} l_{x} K 0\right\rangle=\sum_{m_{x}}\left(l_{x} l_{x} m_{x}-m_{x} \mid 00\right) \Phi_{K}^{l_{x}^{l_{x}} m_{x},-m_{x}}(\Omega)$ Expansion into hyperspherical functions for $L=0$

$$
U=V_{12}+V_{13}+V_{23}
$$

$$
\begin{aligned}
& \Psi_{0}(x, y, \cos \theta)=\tilde{\Psi}_{0}(\alpha, \theta, \rho)=\sum_{l_{x} n} \frac{\varphi_{K 0}^{l l_{x}}(\rho)}{\rho^{5 / 2}} \Phi_{K 00}^{l_{l_{x}}^{l_{x}}}(\Omega)=\quad U_{K K^{\prime} 00}^{l_{x} l_{x}^{l} l_{12}^{\prime} l_{x}^{\prime}}(\rho)=\left\langle l_{x} l_{x} K 0\right| U\left|l_{x}^{\prime} l_{x}^{\prime} K^{\prime} 0\right\rangle \\
& =\sum_{l_{x} K} f_{K 0}^{l l_{x} l_{x}}(\rho) g_{K 0}^{l l_{x}^{l}}(\alpha)\left(2 l_{x}+1\right) P_{l_{x}}(\cos \theta), \varphi_{K L}^{l l_{x}^{l}}(\rho)=\rho^{5 / 2} f_{K 0}^{l l_{x}}(\rho)\left(2 l_{x}+1\right), \quad \quad \text { coupling matrix }
\end{aligned}
$$

$$
\frac{d^{2}}{d \rho^{2}} \varphi_{K L}^{l_{L}^{\prime} x}(\rho)+\left[\frac{2}{\hbar^{2}} \varepsilon-\frac{(K+3 / 2)(K+5 / 2)}{\rho^{2}}\right] \varphi_{K 0}^{l_{x}^{l_{x}}}(\rho)=\frac{2}{\hbar^{2}} \sum_{K_{x}^{l_{x}^{\prime}}} U_{K K}^{l_{1}^{\prime} l_{1}^{\prime}, l_{x}^{\prime l_{x}^{\prime}}}(\rho) \varphi_{K^{\prime} 0}^{l l_{x}^{\prime}}(\rho) \quad \text { hyperradial equations }
$$

[1] R.I. Dzhibuti and K.V. Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. (Energoatomizdat, Moscow. 1993, in Russian).

2.2. HSF basics: methods of solving hyperradial equations [1]

$$
\begin{aligned}
& U_{K K^{\prime}, 00}^{l_{x} l_{x}^{\prime, l_{x}^{\prime}}}(\rho)=\left\langle l_{x} l_{x} K 0\right| U\left|l_{x}^{\prime} l_{x}^{\prime} K^{\prime} 0\right\rangle \\
& U=V_{12}+V_{13}+V_{23}
\end{aligned}
$$

There are several methods for solving hyperradial equations: power expansion [2], artificial hyperradial basis [3, 4], basis of Lagrange functions [5].

New method using cubic spline approximation [6] is proposed.

[1] R.I. Dzhibuti and K.V. Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. (Energoatomizdat, Moscow. 1993, in Russian).
[2] M.I. Haftel, V.B. Mandelzweig, Ann. Phys. 150, No 1, 48-91 (1983).
[3] J.A. Mignaco, I. Roditi. J. Phys. Atom. And Mol. Phys. B14 N 2 L161-L166 (1981).
[4] V.D. Efros, A.M. Frolov, M.I. Mikhtarova, J. Phys. Atom. And Mol. Phys. B15 N 2 L819-L825 (1982).
[5] P. Descouvemont C. Daniel and D. Baye, Three-body Systems with Lagrange-mesh Techniques in Hyperspherical Coordinates, Phys. Rev. C 67, 044309 (2003).
[6] G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980, in Russian).

2.3. New in HSF: solving hyperradial equations using cubic splines

 $\varphi_{K 0}^{l l_{x} l_{x}}(\rho) \equiv \varphi_{l_{x}, n}(\rho)=m_{l_{x}, n, i-1} \frac{\left(\rho_{i}-\rho\right)^{3}}{6 h_{i}}+m_{l_{x}, n, i} \frac{\left(\rho-\rho_{i-1}\right)^{3}}{6 h_{i}}+\left(\varphi_{l_{x}, n, i-1}-\frac{m_{l_{x}, n, i-1} h_{i}^{2}}{6}\right) \frac{\rho_{i}-\rho}{h_{i}}+\left(\varphi_{l_{x}, n, i}-\frac{m_{l_{x}, n, i} h_{i}^{2}}{6}\right) \frac{\rho-\rho_{i-1}}{h_{i}}, \rho \in\left[\rho_{i-1}, \rho_{i}\right],[1]$$K=2 n+2 l_{x_{i}}, n=0,1,2, \ldots$,
$m_{l_{x}, n, i}=\varphi_{l_{x}, n}^{\prime \prime}\left(\rho_{i}\right), \quad \varphi_{l_{x}, n}^{\prime \prime}(\rho)=m_{l_{x}, n, i-1} \frac{\rho_{i}-\rho}{h_{i}}+m_{i} \frac{\rho-\rho_{i-1}}{h_{i}}$,
$h_{i}=\rho_{i}-\rho_{i-1}, i=1,2, \ldots N, m_{l_{x}, n, 0}=m_{l_{x}, n, N}=0$

$-A^{-1} H \varphi_{K L}+\frac{1}{\rho_{i}^{2}}(K+3 / 2)(K+5 / 2) \varphi_{K L}+\varphi_{K L^{\prime}}\left(\rho_{i}\right) \frac{2}{\hbar^{2}} U_{K K}^{L L}(\rho)+\sum_{K^{\prime} \neq K, L^{\prime} \neq L} \varphi_{K^{\prime} L^{\prime}}\left(\rho_{i}\right) \frac{2}{\hbar^{2}} U_{K K^{\prime}}^{L L^{\prime}}(\rho)=\frac{2}{\hbar^{2}} E \varphi_{K L}$
Energies are eigenvalues of matrix B [2].
Wave functions are eigenvectors of matrix B [2].

1. G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980).
2. J.H. Wilkinson, C. Reinsch. Handbook for Automatic Computation. Linear Algebra.

The idea of this method is simultaneous calculation of the mesh function $\boldsymbol{\varphi}_{i}$ and its second derivative \boldsymbol{m}_{i}.

Advantages (+) and disadvantages (-):
In the general case for arbitrary mesh;
(+) small size of matrix for special mesh choice and fast calculation for ground state only, $(-)$ unsymmetric matrix B.
$B \Phi=\lambda \Phi$

2.4. HSF test: Exactly solvable 3-Body harmonic oscillator (HO) models

Three particles with masses $m_{1}=m_{3}=m, m_{2}=\infty$ interact with each other by oscillator potentials:

$$
V_{13}(r)=\frac{m \omega_{13}^{2}}{2} r^{2} \quad V_{12}(r)=\frac{m \omega_{12}^{2}}{2} r^{2} \quad V_{23}(r)=\frac{m \omega_{23}^{2}}{2} r^{2}
$$

Normalized Jacobi coordinates $\{\mathbf{x}, \mathbf{y}\}$:

$$
1 / \mu=1 / m+1 / m=2 / m \quad 1 / M=1 / \infty+1 / 2 m=1 / 2 m
$$

The frequencies of the normal modes are equal to Ω_{1}, Ω_{2}.

$$
\begin{aligned}
& \mu=m / 2 \quad M=2 m \\
& \mathbf{R}=\mathbf{r}_{3}-\mathbf{r}_{1}=\sqrt{2} \mathbf{x} \quad \mathbf{r}=\frac{1}{\sqrt{2}} \mathbf{y}
\end{aligned}
$$

$\Omega_{1,2}^{2}=\frac{\omega_{12}^{2}+\omega_{23}^{2}+2 \omega_{13}^{2} \pm \sqrt{\left(\omega_{12}^{2}+\omega_{23}^{2}+2 \omega_{13}^{2}\right)^{2}-4\left(\omega_{13}^{2} \omega_{23}^{2}+\omega_{13}^{2} \omega_{12}^{2}+\omega_{12}^{2} \omega_{23}^{2}\right)}}{2}$

$$
m=1, \hbar=1
$$

In the case of $\omega_{23}=\omega_{12}$

$$
E_{0}=\hbar \Omega_{1} \frac{3}{2}+\hbar \Omega_{2} \frac{3}{2}
$$

For instance:

$$
\omega_{12}=\sqrt{2} ; \omega_{23}=\frac{1}{\sqrt{2}} ; \omega_{13}=1 \quad E_{0}=4.306
$$

$$
\begin{aligned}
& \Omega_{1}=\sqrt{\omega_{12}^{2}+2 \omega_{13}^{2}}, \Omega_{2}=\omega_{12} \\
& \omega_{12}=\omega_{23}=\omega_{13}=1 \\
& \Omega_{1}=\sqrt{1+2}=\sqrt{3}, \Omega_{2}=1 \\
& \quad E_{0}=\frac{3}{2}(1+\sqrt{3})=4,098
\end{aligned}
$$

$K_{\max }\left(\rho_{\max }=5, \Delta \rho=0.05\right)$	E_{0}	HSF+spline
6	4.1082	algorithm has fast converge
8	4.0992	for increasing
14	4.0988	$K_{\max }$ value
16	4.0988	

$K_{\max }\left(\rho_{\max }=10, \Delta \rho=0.05\right)$	E_{0}
6	4.31187
8	4.3071
12	4.3070
16	4.3070

3.1. FCI \& HSF calculations for "exactly" solvable 3-Body nucleon model: algorithm convergence

In the system of the particles with masses $m_{1}=m_{3}=m, m_{2}=\infty$, light particles 1,3 interact only with heavy particle 2 by nucleon-nucleon potential having repulsive core.

$$
V_{12}(r) \equiv V_{23}(r)=\sum_{k=1}^{3} u_{k} \exp \left(-r^{2} / b_{k}^{2}\right)
$$

The radial Schrödinger equation was solved "exactly" by difference scheme for 2-body system 1 and 2 particles. The energy is equal to -4 MeV

The energy of the independent light particles 1,3 in the field of heavy particle 2 is equal to the sum of
exact result energies of particles 1 and 2, $b_{0}^{-1} \ln K_{E}(q, \tau ; q, 0) \rightarrow \ln \left|\Psi_{0}(q)\right|^{2}-\tilde{E}_{0} \tilde{\tau}, \tilde{\tau} \rightarrow \infty$

Normalized Jacobi coordinates:

3.2. Unified set of effective two-body central potentials

Nucleon-nucleon

Model parameters
$u_{1}^{\prime}=u_{1}=500, u_{2}^{\prime}=u_{2}=-102, u_{3}^{\prime}=u_{3}=-2$,
$b_{1}^{\prime}=0.53, b_{1}=0.37, b_{2}^{\prime}=b_{2}=1.26, b_{3}^{\prime}=b_{3}=2.67$.

Nucleon-alpha-cluster

$$
V_{p-\alpha}(r)=V_{p-\alpha}^{(\mathrm{N})}(r)+V_{p-\alpha}^{(\mathrm{C})}(r)
$$

$$
V_{p-\alpha}^{(\mathrm{C})}(r)=\left\{\begin{array}{c}
\frac{2 e^{2}}{2 R_{\alpha}}\left[3-\left(\frac{r}{R_{\alpha}}\right)^{2}\right], r \leq R_{\alpha} \\
\frac{2 e^{2}}{r}, r>R_{\alpha}
\end{array} \quad R_{\alpha}=1.6755 \mathrm{fm} ;\right.
$$

$$
U_{1}=-76 \mathrm{MeV}, R_{1}=2.05 \mathrm{fm}, a_{1}=0.3 \mathrm{fm} ;
$$

$$
U_{2}=62 \mathrm{MeV}, R_{2}=1.32 \mathrm{fm}, a_{2}=0.3 \mathrm{fm} ;
$$

$$
U_{3}=112 \mathrm{MeV}, R_{3}=1 \mathrm{fm}, a_{3}=0.5 \mathrm{fm} .
$$ ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be}$ with unified set of effective two-body central potentials

$$
b_{0}^{-1} \ln K_{E}(q, \tau ; q, 0) \rightarrow \ln \left|\Psi_{0}(q)\right|^{2}-\tilde{E}_{0} \tilde{\tau}, \tilde{\tau} \rightarrow \infty
$$

slope coefficient gives ground state energy

Comparison of theoretical and experimental binding energies in unified set of potentials
(*for alpha-cluster nuclei ${ }^{6} \mathrm{He},{ }^{6} \mathrm{Li}$, ${ }^{9}$ Be energy of separation into alpha particles and nucleons is given).

Atomic nucleus	Theoretical value, MeV	Experimental value [1], MeV
${ }^{2} \mathrm{H}$	2.22 ± 0.15	2.225
${ }^{3} \mathrm{H}$	8.21 ± 0.3	8.482
${ }^{3} \mathrm{He}$	7.37 ± 0.3	7.718
${ }^{4} \mathrm{He}$	30.60 ± 1.0	28.296
${ }^{6} \mathrm{He}^{*}$	0.96 ± 0.05	0.97542
${ }^{6} \mathrm{Li}^{*}$	3.87 ± 0.2	3.637
${ }^{9} \mathrm{Be}^{*}$	1.573	1.7 ± 0.1

Good agreement with experimental data

3.4. $\alpha-\alpha$ potential $V_{\alpha-\alpha}(r)$ and ground state energy E_{0} of ${ }^{12} \mathrm{C}(\alpha+\alpha+\alpha)$ and ${ }^{16} \mathrm{O}(\alpha+\alpha+\alpha+\alpha)$

Energy of breakup into α-particles is equal to - E_{0}, where E_{0} is the energy of the ground state of α-cluster system.

Experimental breakup energy is equal to
7.37 MeV for ${ }^{12} \mathrm{C}$ and 14.53 MeV for ${ }^{16} \mathrm{O}$.

The slope of resulting straight lines equals the energy of the ground state

$$
\begin{aligned}
& \frac{1}{b_{0}} \ln \tilde{K}_{E}(q, \tau ; q, 0) \rightarrow \frac{1}{b_{0}} \ln \left|\Psi_{0}(q)\right|^{2}-E_{0} \tilde{\tau}, \tilde{\tau} \rightarrow \infty \\
& b_{0}=t_{0} \varepsilon_{0} / \hbar \approx 0.02412, \varepsilon_{0}=1 \mathrm{MeV}, x_{0}=1 \mathrm{fm}, t_{0}=m_{0} x_{0}^{2} / \hbar \approx 1.57 \cdot 10^{-23} \mathrm{~s}, \\
& \tilde{\tau}=\tau / t_{0}, \tilde{E}_{0}=E_{0} / \varepsilon_{0}, m_{0} \text { is the neutron mass }
\end{aligned}
$$

3.5. Calculations for ${ }^{\mathbf{3}} \mathbf{H}$ nucleus: FCI \& HSF algorithms convergence

FCI: Monte-Carlo calculation with statistics $N=7 \cdot 10^{7}$
$b_{0}=t_{0} \varepsilon_{0} / \hbar \approx 0.02412, \varepsilon_{0}=1 \mathrm{MeV}, x_{0}=1 \mathrm{fm}$,
$t_{0}=m_{0} x_{0}^{2} / \hbar \approx 1.57 \cdot 10^{-23} \mathrm{~s}, \tilde{\tau}=\tau / t_{0}, \quad \tilde{E}_{0}=E_{0} / \varepsilon_{0}$,
m_{0} is the neutron mass

$$
b_{0}^{-1} \ln K_{E}(q, \tau ; q, 0) \rightarrow \ln \left|\Psi_{0}(q)\right|^{2}-\tilde{E}_{0} \tilde{\tau}, \tilde{\tau} \rightarrow \infty
$$

$K_{\max }\left(\rho_{\max }=10\right.$, $\Delta \rho=0.05)$	E_{0}
6	$-7,153$
8	$-8,480$
16	$-8,134$
24	$-8,330$
32	-7.384
40	-8.407
48	-8.417

3.6. HSF algorithm convergence

Calculations for ${ }^{3} \mathrm{H}$ nucleus:

HSF+spline method

reproduces
the experimental result

3.7. FCI: Propagator K_{E} and probability density $\left|\Psi_{0}\right|^{2}$ for ground state of ${ }^{\mathbf{3}} \mathrm{He}(p+p+n)$

```
\mp@subsup{b}{0}{-1}}\operatorname{ln}\mp@subsup{K}{E}{
\[
K_{\mathrm{E}}(\mathbf{x}, \mathbf{y}, \tau ; \mathbf{x}, \mathbf{y}, 0) \rightarrow\left|\Psi_{0}(\mathbf{x}, \mathbf{y},)\right|^{2} \exp \left(-\frac{E_{0} \tau}{\hbar}\right)+\left|\Psi_{1}(\mathbf{x}, \mathbf{y},)\right|^{2} \exp \left(-\frac{E_{1} \tau}{\hbar}\right)+\ldots, \tau \rightarrow \infty
\]
```

Potential wall at $r_{i}=5 \mathrm{fm}$ for excluding excitation of breakup states.
Probability density $|\Psi|^{2}$ is consistent with potential landscape

Potential wall for exclusion of
the excitation of break-up states

3.8. FCI 3-body: Comparison of the probability densities $|\Psi|^{2}$ for ground states of ${ }^{6} \mathrm{Li}(\alpha+n+p)$ and ${ }^{6} \mathrm{He}(\alpha+n+n)$

Logarithmic
scale

The probability density $\left|\Psi_{0}\right|^{2}$ for the ${ }^{6} \mathrm{He}$ nucleus and the vectors in the Jacobi coordinates; neutrons and α-clusters are denoted as small empty circles and large filled circles, respectively. The most probable configurations are α-cluster + dineutron (1) and the cigar configuration (2). The configuration $n+{ }^{5} \mathrm{He}$ (3) has low probability [1,2]; $E_{\alpha+\boldsymbol{n}+\boldsymbol{n} \text {,sep }}=0.98 \mathrm{MeV}$.
Feynman's Continual Integrals (FCI) method [1,2] was used.
[1] V. Samarin et al., Proc. Int. Symp. on Exotic Nuclei. (Kazan, Russia, Sept. 2016) World Scientific. Singapore. p. 93 (2017).
[2] V. Samarin et al., Phys. Atom. Nucl., 80, 928 (2017).

3.9. Comparison of the probability densities $|\Psi|^{2}$ for ground states of ${ }^{11} \mathrm{Li}\left(\left\{{ }^{9} \mathrm{Li}\right\}+n+n\right)$ and ${ }^{6} \mathrm{He}(\alpha+n+n)$

The probability density $\left|\Psi_{0}\right|^{2}$ for the ${ }^{11}$ Li nucleus (configuration $\left\{{ }^{9} \mathrm{Li}\right\}+n+n$) and the vectors in the Jacobi coordinates; neutrons and ${ }^{9} \mathrm{Li}$-core are denoted as small empty circles and large filled circles, respectively. The most probable configurations are $\left\{{ }^{9} \mathrm{Li}\right\}+$ di-neutron (1) and the cigar configuration (2).
The configuration ${ }^{10} \mathrm{Li}+n(3)$ has low probability; $E_{\{9 \mathrm{Li}\}+\boldsymbol{n}+\boldsymbol{n} \text {,sep }}=0.37 \mathrm{MeV}$ [1].

Approximation of independent outer neutrons of ${ }^{9} \mathrm{Li}$ and ${ }^{11} \mathrm{Li}$ was used.
[1] V. Samarin et al., Book of Abstracts of LXVIII Int. Conf. Nucleus-2018 (Voronezh, Russia, July 2018). SaintPetersburg (2018).
3.10. FCI 3-body: Probability density $|\Psi|^{2}$ for ground state of ${ }^{9}$ Be $(\alpha+\alpha+n)$

The probability density $\left|\Psi_{0}\right|^{2}$ for the ${ }^{9} \mathrm{Be}$ nuclei and the vectors in the Jacobi coordinates. The most probable configuration is $\alpha+n+\alpha$ (1). The configurations $\alpha+{ }^{5} \mathrm{He}$ (2) and $n+{ }^{8} \mathrm{Be}$ (3) are less probable.

The probability density $\left|\Psi_{0}\right|^{2}$ for the ${ }^{12} \mathrm{C}$ nucleus and the vectors in the Jacobi coordinates. The alpha-particle clusters being considered are represented by circles of radius equal to the root-mean-square radius of the ${ }^{4} \mathrm{He}$ nucleus (1.7 fm). A regular triangle configuration is the most probable, a linear configuration having a low probability.

3.12. Calculations for ${ }^{12} \mathrm{C}(\alpha+\alpha+\alpha)$ nucleus: probability density for ground state

Jacobi coordinates:

$$
\begin{aligned}
\mathbf{R} & =\mathbf{r}_{3}-\mathbf{r}_{1} \\
\mathbf{r} & =\mathbf{r}_{2}-\frac{\mathbf{r}_{1}+\mathbf{r}_{3}}{2}
\end{aligned}
$$

$$
y, \quad r, \mathrm{fm}
$$

$$
\begin{aligned}
& E_{\text {sep }}=7.30 \mathrm{MeV} \\
& \varepsilon_{0}=-7.30 \mathrm{MeV}
\end{aligned}
$$

FCI \& HSF

3.13. HSF calculations for ${ }^{12} \mathrm{C}(\alpha+\alpha+\alpha)$ nucleus: probability density for excited state with $L=0$ (Hoyle state)

The probability density $|\Psi|^{2}$ for the first excited state with total orbital angular momentum $L=0$ (Hoyle state) of the ${ }^{12} \mathrm{C}$ nucleus and the normalized vectors in the Jacobi coordinates. The alphaparticle clusters being considered are represented by circles of radius equal to the root-meansquare radius of the ${ }^{4} \mathrm{He}$ nucleus (1.7 fm). A linear configuration (1) is the most probable, a triangle configuration $(2)\left({ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}\right)$ has a low probability.

4.1. FCI 4-body: Probability density for ground state of ${ }^{4} \mathrm{He}$ nucleus $(\boldsymbol{p}+\boldsymbol{p}+\boldsymbol{n}+\boldsymbol{n})$

4.2. Comparison of the probability densities $|\Psi|^{2}$ for ground states of ${ }^{6} \mathrm{Li}(\alpha+n+p)$ and ${ }^{7} \mathrm{Li}(\alpha+n+n+p)$

Feynman's Continual Integrals (FCI) method [1-4] was used.

The probability density $\left|\Psi_{0}\right|^{2}$ for the ${ }^{6}$ Li nucleus and the vectors in the Jacobi coordinates; neutrons and α-clusters are denoted as small empty circles and large filled circles, protons are denoted as small filled circles. The only one possible configuration is α-cluster + deuteron-cluster [1];
$E_{\alpha+n+p, \text { sep }}=3.64 \mathrm{MeV}, E_{\alpha+d \text {, sep }}=1.47 \mathrm{MeV}$.

The probability density $\left|\Psi_{0}\right|^{2}$ for the ${ }^{7}$ Li nucleus and the vectors in the Jacobi coordinates. The most probable configurations are α-cluster + triton [2] ;
$E_{\alpha+n+n+p, \text { sep }}=10.95 \mathrm{MeV}, E_{\alpha+t, \text { sep }}=2.47 \mathrm{MeV}$
The outer neutrons in ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ are bound in the positively-charged deuteron and triton clusters.
[1] V. Samarin et al., Proc. Int. Symp. on Exotic Nuclei. (Kazan, Russia, Sept. 2016) World Scientific. Singapore. p. 93(2017).
[2] V. Samarin et al., Book of Abstracts of LXVIII Int. Conf. Nucleus-2018 (Voronezh, Russia, July 2018). Saint-Petersburg (2018).
[3] V. Samarin NUCLEAR THEORY, Vol. 36 (2017) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia p. 233.
[4] V. Samarin et al., Phys. Atom. Nucl., 80, 928 (2017).

4.3. FCI 4-body: Probability density for ground state of ${ }^{16} \mathrm{O}(\alpha+\alpha+\alpha+\alpha)$

This region is important for the description of the oneand two-alpha-cluster transfer reactions and resonances.

4.4. HSF basics: description of 4-body system

The "normalized" Jacobi coordinates $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$ are:
$\mathbf{x}=\sqrt{\frac{m_{1} m_{3}}{m_{1}+m_{3}}}\left(\mathbf{r}_{3}-\mathbf{r}_{1}\right), \quad \mathbf{y}_{i}=\sqrt{\frac{m_{i}\left(m_{j}+m_{k}\right)}{m_{1}+m_{2}+m_{3}}}\left(-\mathbf{r}_{i}+\frac{m_{j} \mathbf{r}_{j}+m_{k} \mathbf{r}_{k}}{m_{j}+m_{k}}\right) \quad z=\sqrt{\frac{m_{2} m_{4}}{m_{2}+m_{4}}}\left(\mathbf{r}_{4}-\mathbf{r}_{2}\right)$,
The hyperspherical coordinates are: $\Omega=\left\{\theta_{\mathbf{x}}, \varphi_{\mathbf{x}}, \theta_{\mathbf{y}}, \varphi_{\mathbf{y}}, \theta_{\mathbf{z}}, \varphi_{\mathbf{z}}, \alpha, \beta\right\}, \rho$;
$\rho^{2}=\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2},|\mathbf{x}|=\rho \sin \beta \cos \alpha,|\mathbf{y}|=\rho \sin \beta \sin \alpha,|\mathbf{z}|=\rho \cos \beta \quad \rho$ is the hyperradius.

The hyperradial equations are:
They are solved using cubic spline approximation

$$
\frac{d^{2}}{d \rho^{2}} \chi_{\mu K L}^{l_{x} l_{y} l_{x y} l_{z}}(\rho)-\left[\kappa^{2}+\frac{(\mu+3)(\mu+4)}{\rho^{2}}\right] \chi_{\mu K L}^{l_{l} l_{l} l_{x y} l_{z} l_{z}}(\rho)=\sum_{\mu^{\prime} K l_{x y}^{\prime} l_{x}^{\prime} l_{x y}^{\prime} l_{x y}^{\prime} l_{z}^{\prime}} W_{\mu K \mu^{\prime} K^{\prime}}^{l_{x} l_{l}^{l_{x}} l_{z} \cdot l_{l}^{\prime} l_{y}^{\prime} l_{x y}^{\prime} l_{x y}^{\prime} l_{z}^{\prime}}(\rho) \chi_{\mu K L}^{l_{x}^{\prime} l_{l}^{\prime} l_{x}^{\prime} l^{\prime}}(\rho)
$$

$K=l_{x}+l_{y}+2 n, \mu+3 / 2=l_{z}+K+3 / 2+2 m$
$\mu=l_{z}+K+2 m$ is hypermoment, $n, m=0,1,2 \ldots$

The calculation of coupling matrices was implemented using parallel computing.

$$
\begin{aligned}
& U=V_{12}+V_{13}+V_{14}+V_{23}+V_{24}+V_{34}
\end{aligned}
$$

The hyperspherical functions are: $\Psi_{\mu K L M}^{l_{\mu} l_{l} l_{x} l_{z}}(\omega)=\sum_{m_{x} m_{y} m_{x y} m_{z}}\left(l_{x} l_{y} m_{x} m_{y} \mid l_{x y} m_{x y}\right)\left(l_{x y} l_{z} m_{x y} m_{z} \mid L M\right) \Phi_{\mu K}^{l_{x,}^{l} l_{z} l_{z} m_{x} m_{y} m_{z}}(\omega)$

$$
\begin{aligned}
& \Phi_{\mu K}^{l_{l}^{l} l_{2} l_{2} m_{x} m_{y} m_{z}}=N_{K}^{l_{x}^{l} l_{y}}(\cos \alpha)^{l_{x}}(\sin \alpha)^{l_{y}} P_{n}^{l_{y}+1 / 2 l_{x}+1 / 2}(\cos 2 \alpha) N_{\mu+3 / 2}^{l_{2} K+3 / 2}(\cos \beta)^{l_{z}}(\sin \beta)^{K} P_{m}^{K+2, l_{z}+1 / 2}(\cos 2 \beta) \times \\
& \times Y_{l_{x} m_{x}}(\hat{\mathbf{x}}) Y_{l_{l, m_{y}}}(\hat{\mathbf{y}}) Y_{l_{z} m_{z}}(\hat{\mathbf{z}})
\end{aligned}
$$

[1] R.I. Dzhibuti and K.V. Shitikova. Method of Hyperspherical Functions in Atomic and Nuclear Physics. (Energoatomizdat, Moscow. 1993, in Russian).

4.5. Test for exactly solvable 4-body oscillator model: HSF \& FCI

Four particles with masses $m_{1}=m_{2}=m_{3}=m_{4}=m$ interact each with other by oscillator potentials:

Abstract

Energies:

$$
V_{i j}\left(r_{i j}\right)=\frac{m \omega^{2}}{2} r_{i j}^{2}, V=-U_{0}+\sum_{i<j} V_{i j}\left(r_{i j}\right)=-U_{0}+\frac{m \omega^{2}}{2}\left(r_{12}^{2}+r_{13}^{2}+r_{14}^{2}+r_{23}^{2}+r_{24}^{2}+r_{34}^{2}\right) \text {, }
$$

$$
T=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right), V=-U_{0}+\frac{m}{2}(2 \omega)^{2}\left(x^{2}+y^{2}+z^{2}\right), E_{0}=-U_{0}+\hbar(2 \omega)\left(\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\right)=-U_{0}+9 \hbar \omega
$$

For instance: $m=1, \omega=1, \hbar=1 \quad E_{0}=-U_{0}+9$
HSF HSF+spline and FCI method reproduce accurate results.
Exact value $U_{0}=0, E_{0}=9 ; U_{0}=15, E_{0}=-15+9=-6$
$\ln K_{\mathrm{E}}(q, \tau ; q, 0) \approx \ln \left|\Psi_{0}(q)\right|^{2}-E_{0} \tau, T_{1}<\tau$
Feynman's continual integrals (FCI)
Monte-Carlo calculation with statistics

$$
N=7 \cdot 10^{7} .
$$

$$
\begin{aligned}
& U=-U_{0}+\frac{\omega^{2}}{2} 4\left(x^{2}+y^{2}+z^{2}\right)=-U_{0}+\frac{1}{2}(2 \omega)^{2} \rho^{2}=U(\rho) \\
& W_{\mu K \mu^{\prime} K^{\prime}}^{l_{x} l_{l} l_{x} l_{;} l_{x}^{\prime} l_{y}^{\prime} y_{x, y}^{\prime} l_{z}^{\prime} l_{z}^{\prime}}=\frac{2 m}{\hbar^{2}} U(\rho) \delta_{\mu \mu^{\prime}} \delta_{K K^{\prime}} \delta_{l_{x} l_{x}^{\prime}} \delta_{l y} l_{y}^{l_{y}^{\prime}} \delta_{l_{x y} l_{x y}^{\prime}} \delta_{l_{z} l_{z}^{\prime}} \\
& \frac{d^{2}}{d \rho^{2}} \chi_{\mu K 0}^{l, l_{1}, l_{0} l_{z}}(\rho)-\left[\kappa^{2}+\frac{(\mu+3)(\mu+4)}{\rho^{2}}\right] \chi_{\mu K 0}^{l, l_{1}, l_{0} l_{2}}(\rho)=U(\rho) \chi_{\mu K 0}^{l, l_{0}, l_{z}}(\rho) \\
& \frac{d^{2}}{d \rho^{2}} \chi_{000}^{0000}(\rho)-\left[\kappa^{2}+\frac{(3)(4)}{\rho^{2}}\right] \chi_{000}^{\operatorname{cose}}(\rho)=U(\rho) \chi_{000}^{0000}(\rho) \kappa^{2}=\frac{2}{\hbar^{2}} E, E=\frac{\hbar^{2} \kappa^{2}}{2} \\
& \text { Exact value } E_{n}=4 n+2 l+3=9,13, \ldots ; l=3
\end{aligned}
$$

Summary

1. Feynman's continual integrals method in Euclidean time was used for calculation of energies and wave functions of the ground states of light nuclei ${ }^{3} \mathrm{H},{ }^{3,4} \mathrm{He}{ }^{6} \mathrm{He},{ }^{6,7,11} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$.
2. The agreement with the experimental data on binding energies was achieved using the nucleon-nucleon interaction potentials similar to the M3Y potential and nucleon-cluster and cluster-cluster potentials in the forms of the superposition of the Woods-Saxon type functions.
3. The correctness of calculations was checked by comparison with the results of the expansion in hyperspherical functions.
4. New effective method for the solution of the system of hyperradial equations using cubic splines is proposed.

Acknowledgments
This work was supported by the Russian Science Foundation(RSF), research project No. 17-12-01170.

Thank You

Volga river

Dubna city

