Universita degli Studi di Padova
INFN

Perspectives on the measurement of competitive

double gamma decay with the AGATA tracking
array

D. Brugnara'?, J.J. Valiente-Dobén?, A. Goasduff'?, P.
Napiralla?, N. Pietralla®, P. R. John?, D. Mengoni'-?

September 4, 2018

1 Dipartimento di Fisica e Astronomia e sez. INFN, INFN;
2 INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy;

3 Institut fiir Kernphysik, TU Darmstadt, Germany



Previous observations

» Observed in 1959 and later
between 07 — 0T states,
no single photon
emission is possible

Nuclear Physics Ad74 (1987) 412-450
North-Holland, Amsterdam

NUCLEAR TWO-PHOTON DECAY IN 0* 0" TRANSITIONS
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J. SCHIRMER and D. SCHWALM

» Observed in 2015 between
11% — %, single
photon emission is
possible
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Observation of the competitive double-gamma
nuclear decay
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Challenges
» Never observed with HPGe but with fast LaBrs s ntilltors [\

» Main challenge posed by Compton scattered events

400 — yy/y-decay + background source
—— Compton scat. + background .

300

At (ns)

> Can the versatility of a new-generation segmented HPGe
detector make up for the limited time resolution?

» Can gamma rays be reconstructed with sufficient precision?

C. Walz et al. “Observation of the competitive double-gamma nuclear decay.” Nature (2015)
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The (Competitive) Double Gamma Decay

» Second order perturbative QED and nuclear structure

models combined
» Two photons are emitted in the decay between two nuclear

states
> Kramp et al. (1987) between 07 — 0% 160 states

+
> C. Walz et al. (2015) between 11— — 37 137By states
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The (Competitive) Double Gamma Decay (**'Ba)

» The differential decay width is obtained by summing over
all virtual nuclear states.
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AGATA

» Segmented HPGe detector with unprecedented versatility

EIC RN

Crystal Array  Pulse Shape Analysis Tracking

Figure: Left: One segmented HPGe crystal. Right: The full array in
its current configuration

S. Akkoyun et al. “AGATA - Advanced GAmma Tracking Array.”, NIM, (2012)
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The Simulation

> Geant4d simulation with the array geometry returns the
interaction hits and deposited energy

» 661.7 keV photons are simulated

» double gammas are simulated with correct energy and
angle distributions
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The Tracking

> The tracking algorithm
reconstructs Compton scattered
photons from the PSA hits

» Using the positions of interaction and
energies, assigns to a set of interaction
points a merit factor based on:

» Distance travelled in Ge
» Probability of Compton interaction:

(Bgeom—Em)*
S. J. Colosimo PhD Thesi Xp A~ a2
. . olosimo €esl1s .
» Probability of photoelectric interaction

> Three parameters can be set:

1. sigma ‘thet Position resolution factor
2. minprobsing Minimum probability to accept a cluster as a single interaction point

3. minprobtrack Minimum figure of merit value to accept a cluster

A. Lopez-Martens et al., 7~ ray tracking algorithms: a comparison” NIM (2004)
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Optimizing the parameters

» The best parameter combination needs to: INFN
» Track correctly double gammas (not reject a cons e
amount)
> Not track single gammas as fold-2
£1
g Best parameters
False multiplicity 2 events Ratio of tracked multiplicity 2 and 1 ° +
o 03 o 0. I
3 1 5 | Standard values
£ 0.25] o025 z
; 0.2] é 0. 10 3|
0.15| L
0.1)
0.05] [
6|
00 005 01 015 02 025 03 005 0.1 015 02 025 03 10
Minprobtrack Minprobtrack L
Number of multiplicity 1 events - Tracked P/T

1 2 3 4 5 6 7
Multiplicity

Minprobsing
Minprobsing

> Fewer single
gammas are
tracked as

double gamg1?516

0.05 01 015 02 025 0.3 005 01 015 02 025 03
Minprobtrack Minprobtrack




The simulation

» The tracking, with optimal 2 S—
parameters is generating a 3 —TrA
bias on the energy ; T8
distribution of the double 5 T defaut
gammas =

» Nearby events are mostly 0.002
incorrectly reconstructed
events
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How do the new parameters perform?

> Standard parameéters
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» OFT has improved the rejection of Compton
scattered events
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How do the new parameters perform?
(INFR

» Double gamma events can also be simulated
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» The difference of the normalized histograms tells us where
correctly reconstructed events are located
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How do the new parameters perform?
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» The difference of the normalized histograms tells us where
correctly reconstructed events are located
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» Distance from the source
and aperture angle permit
to identify photons
scattering from one
side to the other
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» On the surface of the detector many Compton scattered
events are reconstructed as double gammas.
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Preliminary results

Event Type Nobs/Nsim NébS/Nsim
v 7.04 x 107° 3.81 x 1076
vy 3.27x 1073 1.15x 1073
Ratio v/vy 2.15x 1072 3.31 x 1073

Where
> N5 number of observed multiplicity two gammas
> N/, number of observed multiplicity two gammas after
further event selection

» N, number of simulated events
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Preliminary experimental approach

INFN
» Taking into account the discard rate and the deteC

efficiency, in order to observe 10* double gammas 259
Tb of disk space are needed

The stability of the array over time is another crucial
aspect
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Summary and perspectives

1. A simulation at the emission of single and double gamma
was performed

2. Optimal parameters for the tracking were found
3. Event selection was performed

4. Some preliminary experimental considereation were made

Future perspectives

» AGATA 47 would increase the efficiency e, = 52.2%
eryy) = 32.5%

> New tracking algorithms are developed namely with a
Bayesian statistical approach

» Improvements in the Pulse Shape Analysis, with focus on a
error estimation

Thank you for your attention
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Some experimental results
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How much is an observable affected

» The energy distribution of the double gammas before and
after the 2D gates
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The

simulation

Aperture angle and energy
difference makes for
another possible event
selection 2D gate
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Multiplicity

» Multiplicity in the
simulation and during the
experiment, where
background is present.
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Random coincidences

INFN
» Random coincidences pose another challenge tf

measurement
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