Study of Few-Body Nuclei by Feynman’s Continual Integrals and Hyperspherical Functions

Thursday, 6 September 2018 17:23 (18 minutes)

The probability densities for the ground states of 3H, 3, 4, 6He, 9Be nuclei were calculated in Refs. [1, 2] by Feynman’s continual integrals method in imaginary (Euclidean) time [3, 4]. The present work is devoted to studying other light nuclei 6, 7, 9, 11Li, 6, 10Be using the same approach. For example, the probability density for the 6Li nucleus is shown in Figure. The correctness of calculations was checked by comparison with the results of the expansion in hyperspherical functions (K-harmonics) [5] using new effective method for the solution of the system of hyperradial equations using cubic splines [6].

Figure. The probability density for the 6Li nucleus and the vectors in the Jacobi coordinates; neutrons are denoted as small empty circles, protons and alpha-clusters are denoted as small filled circles and large filled circles, respectively. The only one possible configuration is alpha-cluster + deuteron-cluster.

References

Selected session

Few body systems

Primary author: Prof. SAMARIN, Viacheslav (Flerov Laboratory of Nuclear Reactions, the Joint Institute for Nuclear Research)

Co-author: Mr NAUMENKO, Mikhail (Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research)

Presenter: Prof. SAMARIN, Viacheslav (Flerov Laboratory of Nuclear Reactions, the Joint Institute for Nuclear Research)

Session Classification: Few body