V.V. Samarin, Yu.E. Penionzhkevich, M.A. Naumenko,
N.K. Skobelev, Yu.G. Sobolev

FLEROV LABORATORY of NUCLEAR REACTIONS Joint Institute for Nuclear Research, Dubna, Russia

Outline

1. Role of neutron transfer in the dynamics of nucleus-nucleus collisions.
2. Time-dependent analysis of nucleon rearrangement in nucleus-nucleus collisions.
3. Few-neutron transfer reactions with ${ }^{3,6} \mathrm{He}$ nuclei.
4. Neutron rearrangement and total cross sections of reactions with ${ }^{9,11}$ Li nuclei.
5. Nucleon rearrangement in fusion and multi-nucleon transfer reactions with ${ }^{40} \mathrm{Ca}$ nucleus.

1. Role of nucleon transfer in dynamics of nucleus-nucleus collisions

- Leads to transfer channels (stripping, pickup, multi-nucleon transfer)
- Leads to change in the potential energy of nuclei which
- changes the cross-section of individual channels (e.g., fusion) and the total reaction cross section compared to the model of nuclei with "frozen" neutrons, which is important in the calculation of the cross sections;
- may justify the use of phenomenological potentials depending on the energy and the orbital momentum within the optical model (OM), the distorted wave Born approximation (DWBA), etc.

2.1. Theoretical model basics

The microscopic approach based on the numeric solution of the time-dependent Schrödinger equation [1-4] for the outer and inner neutrons and protons of colliding nuclei.

- Classical motion of cores.
- Time-dependent Schrödinger equation (TDSE) to describe neutron rearrangement and modification of the barrier of the nucleus-nucleus potential

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left\{-\frac{\hbar^{2}}{2 m} \Delta+V_{1}\left(\left|\mathbf{r}-\mathbf{r}_{1}(t)\right|\right)+V_{2}\left(\left|\mathbf{r}-\mathbf{r}_{2}(t)\right|\right)+\hat{V}_{L S}^{(1)}\left(\mathbf{r}-\mathbf{r}_{1}(t)\right)+\hat{V}_{L S}^{(2)}\left(\mathbf{r}-\mathbf{r}_{2}(t)\right)\right\} \Psi(\mathbf{r}, t), \quad \Psi(\mathbf{r}, t)=\binom{\Psi(\mathbf{r}, t)}{\phi(\mathbf{r}, t)}
$$

- The initial wave functions were determined from the spherical shell model with parameters providing reasonable values of charge radius and separation energies of outer neutrons and protons.
- The initial conditions for the proton wave functions included the long-range character of the Coulomb interaction with the other nucleus. For instance, the proton wave function in the isolated projectile nucleus at a finite distance from the target nucleus was preliminarily subjected to slow (adiabatic) switching of the Coulomb interaction with the target nucleus. Thus, the polarization effects of the proton cloud were already taken into account in the initial condition.
[1] V. Samarin. Phys. Atom. Nucl. 78, 128 (2015).
[2] V. Samarin, EPJ Web Conf. 66, 03075 (2014).
[3] V. Samarin, EPJ Web Conf. 86, 00040 (2015).
[4] V. Samarin et al. Bull. Russ. Acad. Sci: Phys., 82, 637 (2018)

Light quantum particle (nucleon) 3

2.2. Benefits of time-dependent Schrödinger equation approach

- quantum description of several independent external neutrons,
- small 3D mesh step (0.1-0.2 fm, smaller than the length of the probability density oscillations),
- classical description of motion of centers of nuclei,
- may be used for both light and heavy nuclei,
- fast calculation,
- intuitive visualization of dynamics.

3.1. Calculation of probability and cross section for neutron pickup in reaction ${ }^{\mathbf{3}} \mathbf{H e}+{ }^{\mathbf{4 5}} \mathbf{S c}$

Neutron pickup
probability
$p_{1}(b, E)=\lim _{t \rightarrow \infty} W_{1}(b, E, t)$
W_{1} is integral of
probability density in
vicinity of projectile
nucleus $(\sim 3 \mathrm{fm})$
Pickup cross section
$\sigma(E)=\int_{0}^{\infty} p_{1}(b, E) b d b$
b is impact parameter

${ }^{3} \mathrm{He}$ including only 1 neutron in field of heavier core, makes it possible to study transfer process in simplest case

3.2. Calculation of probability and cross section for neutron stripping in reaction ${ }^{3} \mathrm{He}+{ }^{45} \mathbf{S c}$

${ }^{3} \mathrm{He}$ including only 1 neutron in field of heavier core, makes it possible to study transfer process in simplest case

3.3. Calculation of cross sections for formation of isotopes ${ }^{44} \mathrm{Sc}$ and ${ }^{46} \mathrm{Sc}$ in reaction ${ }^{3} \mathrm{He}+{ }^{45} \mathrm{Sc}$

[1] (Experiment) N. K. Skobelev, A. A. Kulko, Yu. E. Penionzhkevich et al. Phys. Part. Nucl. Lett. 2013. V. 10. P. 410.
[2] (Evaporation code) NRV web knowledge base on low-energy nuclear physics. URL: http://nrv.jinr.ru/

3.4. Results of calculation of cross section for formation of isotope ${ }^{45} \mathbf{T i}$ in reaction ${ }^{3} \mathrm{He}+{ }^{45} \mathrm{Sc}$

$$
\sigma(E)=\int_{0}^{\infty}\left[P_{1}(b, E)+P_{2}(b, E)\right] b d b
$$

Transfer mechanisms
First mechanism of ${ }^{45} \mathrm{Sc}$ formation with probability P_{1} :
a) proton transfer to quasi-stationary excited states lower than sum of Coulomb and centrifugal barriers for protons; b) proton transition to lower bound states with neutron emission.

Second mechanism of ${ }^{45} \mathrm{Sc}$ formation with probability P_{2} :
a) proton transfer (stripping) from projectile to target;
b) neutron transfer (pickup) from target to projectile.

Fusion-evaporation mechanism

Third mechanism of ${ }^{45} \mathrm{Sc}$ formation
a) fusion with formation of compound nucleus;
b) evaporation of one proton and two neutrons.

Good agreement with experimental data. Contribution of fusion-evaporation is significant.

Correlated proton stripping and neutron pickup mechanism is proposed for description of reaction ${ }^{45} \mathbf{S c}\left({ }^{3} \mathbf{H e},{ }^{3} \mathrm{H}\right){ }^{45} \mathbf{T i}$

3.5. Neutron stripping in reaction ${ }^{3} \mathrm{He}+{ }^{197} \mathrm{Au}$

Example of time evolution of the probability density for the neutron of ${ }^{3} \mathrm{He}$ in the collision with ${ }^{197} \mathrm{Au}$ at $E_{\mathrm{cm}}=20 \mathrm{MeV}$, impact parameter $b=1 \mathrm{fm}(\mathrm{a}-\mathrm{c})$ and at $E_{\mathrm{cm}}=40 \mathrm{MeV}$, $b=7.5 \mathrm{fm}$ (e-g). Radii of circumferences equal the effective radii of nuclei $R_{1}=2 \mathrm{fm}$, $R_{2}=7.5 \mathrm{fm}$. The course of time corresponds to the panel locations ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) and (e, $\left.\mathrm{f}, \mathrm{g}\right)$.

3.6. Calculation of cross sections for formation of isotopes ${ }^{196} \mathrm{Au}$ and ${ }^{198} \mathrm{Au}$ in reaction ${ }^{3} \mathrm{He}+{ }^{197} \mathrm{Au}$

Good agreement with experimental data.
Pickup cross section is lower than stripping cross section.
Contribution of fusion-evaporation is negligible.

3.7. Evolution of proton probability density for collision ${ }^{3} \mathrm{He}+{ }^{194} \mathrm{Pt}$: proton stripping

Excited quasi-stationary states lower than sum of Coulomb and centrifugal barriers for protons

First mechanism of ${ }^{194} \mathrm{Au}$ formation with probability P_{1}
$d-e-f: E_{c m}=25 \mathrm{MeV}, b=4.6 \mathrm{fm}$
time
$a-b-c: E_{c m}=19 \mathrm{MeV}, b=0$

3.8. Results of calculation of cross section for formation of isotope ${ }^{194} \mathrm{Au}$ in reaction ${ }^{3} \mathrm{He}+{ }^{194} \mathrm{Pt}$

Second mechanism of ${ }^{194} \mathrm{Au}$ formation with probability P_{2} : resonance tunneling to levels with close energies
(a) Total probability $P_{1}+P_{2}$ of proton transfer from ${ }^{3} \mathrm{He}$ to ${ }^{194} \mathrm{Pt}$ as a function of distance $R_{\text {min }}$ of minimum approach for $E_{\mathrm{cm}}=25 \mathrm{MeV}$ (solid line), 19 MeV (dashed-and-dotted line) and probability of transfer to discrete spectrum states with energies above Fermi level for $E_{\mathrm{cm}}=25 \mathrm{MeV}$ (dashed line) and 19 MeV (dotted line). (b) Cross section for formation of ${ }^{194} \mathrm{Au}$ in ${ }^{3} \mathrm{He}+{ }^{194} \mathrm{Pt}$ reaction. Dots are experimental data from [1], solid line is estimated contribution from neutron evaporation after proton transfer. Dashed line shows contribution of the fusion-evaporation mechanism calculated using code of NRV knowledge base [2].

3.9. Calculation of probability and cross section for neutron stripping in reaction ${ }^{6} \mathbf{H e}+{ }^{197} \mathbf{A u}$

Dependence of neutron stripping probability on distance $R_{\min }$ of minimum approach for neutron transfer from ${ }^{6} \mathrm{He}$ to ${ }^{197} \mathrm{Au}\left(E_{\mathrm{cm}}=19 \mathrm{MeV}\right.$ and 25 MeV , dashed and solid curves, respectively).
$R_{\min }(b, E)$ is minimum distance between
centres of nuclei

Based on results for ${ }^{3} \mathrm{He}$, more complicated case of ${ }^{6} \mathrm{He}$ (2 neutrons, halo) is analyzed
3.10. Animation: Evolution of neutron probability density for collision ${ }^{6} \mathrm{He}+{ }^{197} \mathrm{Au}$: neutron stripping from ${ }^{6} \mathrm{He}$ and breakup

Evolution of probability density for valence neutron of ${ }^{6} \mathrm{He}$ in collision ${ }^{6} \mathrm{He}+{ }^{197} \mathrm{Au}$ in model with $E\left(\mathbf{1 p}_{3 / 2}\right)=-E_{\text {sep }}(\mathbf{1 n})=$ $=-1.8 \mathrm{MeV}$, $E_{\mathrm{cm}}=30 \mathrm{MeV}>V_{\mathrm{B}}$.

Potential well of ${ }^{6} \mathrm{He}$ is transformed into well of ${ }^{5} \mathrm{He}$ after neutron transfer from He to Au .

Breakup of ${ }^{5} \mathrm{He}$ after neutron transfer to Au .
${ }^{6} \mathrm{He}$ (2 neutrons, halo) is more complicated case compared with ${ }^{3} \mathrm{He}$

3.11. Animation: Evolution of neutron probability density for collision ${ }^{6} \mathrm{He}+{ }^{197} \mathrm{Au}$: neutron pickup to metastable states of $\mathbf{H e}$

Evolution of
probability density for
neutron of ${ }^{197} \mathrm{Au}$ from
level $3 p_{3 / 2}$ in collision
${ }^{6} \mathrm{He}+{ }^{197} \mathrm{Au}$ at
$E_{\mathrm{cm}}=30 \mathrm{MeV}>V_{\mathrm{B}}$.
Formation of ${ }^{196} \mathrm{Au}$ by:
first mechanism
collision of α-core of ${ }^{6} \mathrm{He}$ with neutrons in periferical region of Au in grasing collision ${ }^{6} \mathrm{He}+\mathrm{Au}$; Second mechanism neutron transfer from Au to He .

Breakup of ${ }^{7} \mathrm{He}$ after neutron transfer to He .

3.12. Calculation of cross sections for formation of isotopes ${ }^{196} \mathrm{Au}$ and ${ }^{198} \mathrm{Au}$ in reaction ${ }^{6} \mathrm{He}+{ }^{197} \mathrm{Au}$

Reasonable agreement with experimental data. Contribution of fusion-evaporation is low.
Calculated pickup cross section is lower than calculated stripping cross section.
Experimental points in regions 1 and 2 of ${ }^{196} \mathrm{Au}$ data may be results of contributions of other channels.
3.13. Calculation of cross sections for formation of isotopes ${ }^{46} \mathrm{Sc}$ in reaction ${ }^{6} \mathrm{He}+{ }^{45} \mathrm{Sc}$ and ${ }^{65} \mathrm{Zn}$ in reaction ${ }^{6} \mathrm{He}+{ }^{64} \mathrm{Zn}$

Good agreement with experimental data. Contribution of fusion-evaporation is noticeable.

4.1. Experimental data on total cross sections of reactions with ${ }^{9,11}$ Li nuclei

$\sigma_{\mathrm{R}}, \mathrm{mb}$

A series of experiments on measurement of total cross sections for reactions ${ }^{6,7,9,11} \mathrm{Li}+$ ${ }^{28} \mathrm{Si}$ in the beam energy range $5-50 \mathrm{~A} \mathrm{MeV}$ was performed at Flerov Laboratory of Nuclear Reactions (FLNR), Joint Institute for Nuclear Research (JINR) and some other laboratories. The interesting results were the unusual enhancements of total cross sections for ${ }^{9,11} \mathrm{Li}+{ }^{28} \mathrm{Si}$ reactions as compared with ${ }^{6,7} \mathrm{Li}+{ }^{28} \mathrm{Si}$ reactions.
[1] A.C. Villari et al., Phys. Lett. B 268, 345 (1991).
[2] Li Chen et al., High Energy Physics and Nuclear Physics 31, 1102 (2007).
[3] R.E. Warner et al., Phys. Rev. C 54, 1700 (1996).
[4] Yu. E. Penionzhkevich et al., Phys. Atom. Nucl., 80, 928 (2017).

4.2. Animation: Evolution of neutron probability density for collision ${ }^{9} \mathbf{L i}+{ }^{28} \mathbf{S i}$

inner neutrons of Li
Time evolution of probability density $|\Psi|^{2}$ for strongly bound neutrons is similar to the motion of the "frozen" shell.

$$
1 p_{3 / 2}
$$

outer neutrons of ${ }^{9} \mathrm{Li}$
Time evolution of probability density $|\Psi|^{2}$ for weakly bound neutrons: appreciable rearrangement of neutrons between nuclei.
4.3. A physical mechanism is proposed that explains the presence of a sharp maximum in the total cross section of the ${ }^{9} \mathrm{Li}+{ }^{28} \mathrm{Si}$ reaction in the energy range $10-20 A$ MeV based on the solution of the time-dependent Schrödinger equation for outer neutrons of projectile nuclei
${ }^{9} \mathrm{Li}$ was represented as core ${ }^{7} \mathrm{Li}+n+n$
Evolution of the probability density of each of the two outer neutrons of ${ }^{\mathbf{9}} \mathbf{L i}$ in collision ${ }^{9} \mathbf{L i}+{ }^{28} \mathbf{S i}$:
course of time

Adiabatic motion:

when the nuclei approach, two-center "molecular" states (MS) are formed;
$\mathrm{v}_{1} \ll\langle\mathrm{v}\rangle, E_{\text {lab }}=7 \mathrm{AMeV}$

Intermediate case:

a noticeable rearrangement of neutrons in the region between the surfaces of the nuclei;
$\mathrm{v}_{1} \sim\langle\mathrm{v}\rangle, E_{\text {lab }}=15 \mathrm{~A} \mathrm{MeV}$

Non-adiabatic motion:
during the collision neutrons do not have time to rearrange;
v_{1} 〉> 〈v>, $E_{\text {lab }}=60 \mathrm{~A} \mathrm{MeV}$
energy, $A \mathrm{MeV} \quad \begin{aligned} & \text { Criterion of } \\ & \text { nonadiabaticity }\end{aligned} \quad \frac{v_{1}}{\langle v\rangle} \approx \gamma \equiv\left(\frac{E_{\mathrm{lab}}}{\langle\varepsilon\rangle A}\right)^{1 / 2} \begin{aligned} & \text { v } \\ & \mathrm{v}_{1} \text { is the average velocity of the projectile nucleus relative to the target nucleus, } \\ & \langle\mathrm{v}\rangle \text { is average velocity of the outer neutron in the projectile nucleus }\end{aligned}$

4.4. Angular distributions for elastic scattering of ${ }^{6,7} \mathbf{L i}+{ }^{28} \mathbf{S i}$ and energy-independent nuclear part of nucleus-nucleus optical potential $V+i W$

Fig. 4. Experimental angular distributions (points) and results of respective calculations based on the NRV optical model [17] (curves) for the elastic scattering of the following nuclei on ${ }^{28}$ Si nuclei: $(a)^{6} \mathrm{Li}$ nuclei of energy $E_{\text {lab }}=318 \mathrm{MeV}$ [18] (curve 4, multiplied by 10^{-6}), $99 \mathrm{MeV}[19]$ (curve 3 , multiplied by 10^{-4}), 32 MeV [20] (curve 2, multiplied by 10^{-2}), and 7.5 MeV [21] (curve 1) and ($c)^{7} \mathrm{Li}$ nuclei of energy $E_{\text {lab }}=350 \mathrm{MeV}[22]$ (curve 4 , multiplied by 10^{-6}), $178 \mathrm{MeV}[23]$ (curve 3, multiplied by 10^{-4}), 36 MeV [24] (curve 2, multiplied by 10^{-2}) and $8 \mathrm{MeV}[25]$ (curve 1). Figures $4 b$ and $4 d$ give the total cross sections for, respectively, the ${ }^{6} \mathrm{Li}+{ }^{28} \mathrm{Si}$ reactions and the ${ }^{7} \mathrm{Li}+{ }^{28} \mathrm{Si}$ reaction. The displayed points stand for experimental data from [2, 3,9], while the curves represent the results of optical-model calculations.
Table 3. Parameters of the optical potential for elastic ${ }^{6,7,9} \mathrm{Li}+{ }^{28} \mathrm{Si}$ scattering (the values of the Akyuz-Winther parameters [27])

Reaction	$E_{\text {ab }}, \mathrm{MeV}$	$r_{0 \mathrm{C}}, \mathrm{fm}$	V_{0}, MeV	$r_{0 V}, \mathrm{fm}$	a_{V}, fm	W_{0}, MeV	$r_{0 W}, \mathrm{fm}$	a_{W}, fm
${ }^{6} \mathrm{Li}+{ }^{28} \mathrm{Si}$	$7.5-318$	1.3	$19.75(36.64)$	1.245	$0.63(0.583)$	120.493	0.948	0.632
${ }^{7} \mathrm{Li}+{ }^{28} \mathrm{Si}$	$8-350$	1.3	$21.046(38.265)$	1.245	$0.657(0.589)$	120.493	0.948	0.632
${ }^{9} \mathrm{Li}+{ }^{28} \mathrm{Si}$ (see main body of the text)	$18-500$	1.3	$22.532(40.968)$	1.245	$0.667(0.598)$	120.493	0.948	0.632

Yu. E. Penionzhkevich et al., Phys. Atom. Nucl., 80, 928 (2017).

4.5. Energy-dependent nonadiabatic correction to the nuclear part of nucleus-nucleus potential

$\operatorname{Re}\left\{V_{\mathrm{N}}(R)\right\} \equiv V\left(R, E_{\text {lab }}\right)=\bar{V}(R)+\mathrm{\eta}_{2}\left(E_{\text {lab }}\right) \delta V_{\mathrm{d}}\left(R, E_{\text {lab }}\right)$ nonadiabatic correction

By analogy with a single folding potential $\delta V_{\mathrm{d}}\left(R(t), E_{\text {lab }}\right)=N \int_{\Omega} d^{3} r \delta \rho_{1}(r, t) U_{\mathrm{T}}\left(\left|\vec{r}-\vec{r}_{2}(t)\right|\right)$ Ω is the region of integration;
$\delta \rho_{1}(r, t)=\rho_{1}(r, t)-\rho_{1}^{(0)}(r, t)$
$\delta \rho_{1}(r, t)$ is change in the probability density due to rearrangement of neutrons between the projectile and the target;
$\rho_{1}(r, t)$ is the probability density of outer neutrons of the projectile nucleus
taking into account their interaction with the target;
$\rho_{1}^{(0)}(r, t)$ is the probability density of outer neutrons of the projectile nucleus without taking into account their interaction with the target;
$U_{\mathrm{T}}\left(\left|\vec{r}-\vec{r}_{2}(t)\right|\right)$ is the mean field of the target nucleus for neutrons.
$N=2$ is the number of independent neutrons for ${ }^{9} \mathrm{Li}\left({ }^{7} \mathrm{Li}+n+n\right)$.

$$
R=\left|\vec{r}_{1}-\vec{r}_{2}\right|
$$

4.6. Potential of optical model depending on energy

$\operatorname{Re}\left\{V_{\mathrm{N}}\left(R, E_{\text {lab }}\right)\right\}=\bar{V}(R)+\eta_{2}\left(E_{\text {lab }}\right) \delta V_{\mathrm{d}}\left(R, E_{\text {lab }}\right)$
The change in the radius of the imaginary part was chosen proportional to change in the position of the real part (for example, as in [1]):
$\operatorname{Im}\left\{V_{\mathrm{N}}\left(R, E_{\text {lab }}\right)\right\}=\left\{\begin{array}{c}-W_{1}, R<R_{b}\left(E_{\text {lab }}\right) \\ -W_{1} \exp \left(-\frac{R-R_{b}\left(E_{\text {lab }}\right)}{b}\right), R \geq R_{b}\left(E_{\text {lab }}\right)\end{array}\right.$

$R_{\mathrm{B}}\left(E_{\text {lab }}\right)=R_{\mathrm{B}, 0}+\delta R_{\mathrm{B}}\left(E_{\text {lab }}\right)$,
$R_{b}\left(E_{\text {lab }}\right)=R_{a}+k \delta R_{\mathrm{B}}\left(E_{\text {lab }}\right)$,
where R_{a} and k are parameters
The change in the height and the position of the barrier with an increase of energy for ${ }^{9} \mathrm{Li}+{ }^{28} \mathrm{Si}$ due to the rearrangement of neutrons [2].

4.7. Total cross section and reaction probability due to interaction of ${ }^{28} \mathrm{Si}$ nucleus with ${ }^{9} \mathrm{Li}$-like core of ${ }^{11} \mathrm{Li}$ nucleus

The total cross section for the reaction ${ }^{9} \mathrm{Li}+{ }^{28} \mathrm{Si}$: dots are experimental data, curve is the result of calculations in the optical model with an energydependent optical potential [1];

$$
\begin{array}{cl}
\sigma_{\mathrm{R}}=\frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \tilde{P}_{\text {core }}(l, E) & \begin{array}{l}
\text { quantum } \\
\text { formula }
\end{array} \\
l=k b & \text { semiclasssical } \\
\sigma_{\mathrm{R}}=2 \pi \int_{0}^{\infty} P_{\text {core }}(b, E) b d b & \text { formula }
\end{array}
$$

The probabilities $P_{\text {core }}$ of the reaction due to the interaction of the ${ }^{28} \mathrm{Si}$ nucleus with the ${ }^{9} \mathrm{Li}$-like core of the ${ }^{11} \mathrm{Li}$ nucleus as a function of the impact parameter b for energies:
2.5 A MeV (solid line), 5 A MeV (dashed line),
12 A MeV (dot-dashed line), 50 A MeV (dotted line).

1. Yu. E. Penionzhkevich et al., Phys. Atom. Nucl., 80, 928 (2017).
4.8. Time-dependent microscopic description of dynamics of outer neutrons of ${ }^{11} \mathrm{Li}$ during collision ${ }^{11} \mathrm{Li}+{ }^{28} \mathrm{Si}$

Animation:

An example of evolution of the probability density $\rho(\mathbf{r}, t)$ of external neutrons of the ${ }^{11} \mathrm{Li}$ nucleus in its collision with the ${ }^{28} \mathrm{Si}$ nucleus at energy $E_{\text {lab }}=12.6 \mathrm{~A} \mathrm{MeV}\left(E_{\mathrm{cm}}=100 \mathrm{MeV}\right)(\mathrm{a})$ and $E_{\text {lab }}=50.6 \mathrm{~A} \mathrm{MeV}$ $\left(E_{\mathrm{cm}}=400 \mathrm{MeV}\right)(\mathrm{b})$

The probabilities of neutron transfer to unoccupied bound states of discrete spectrum of the ${ }^{28} \mathrm{Si}$

The probabilities of neutron transfer to states of continuous spectrum

4.9. The total cross section σ_{R} for the reaction ${ }^{11} \mathrm{Li}+{ }^{28} \mathrm{Si}$

${ }^{11} \mathrm{Li}$ was represented as core ${ }^{9} \mathrm{Li}+n+n$

Experimental (symbols) and calculation for $C=1$ (dashed curve) and $C=2$ (solid curve) for the total reaction cross section ${ }^{11} \mathrm{Li}+{ }^{28} \mathrm{Si}$: solid (red) triangles are the new results of [4]. Other data for ${ }^{11} \mathrm{Li}$: filled circles [3], empty circle [1], empty triangles [2].
$\sigma_{\mathrm{R}}=2 \pi \int_{0}^{\infty} P_{\mathrm{R}}(b, E) b d b$
The probability of reaction

$$
\begin{equation*}
P_{\mathrm{R}}(b, E)=1-\left[1-P_{\mathrm{core}}(b, E)\right]\left[1-P_{\mathrm{loss}}(b, E)\right]^{2} \tag{2}
\end{equation*}
$$

$P_{\text {core }}$ is the probability of the reaction due to the interaction of the ${ }^{28} \mathrm{Si}$ nucleus with the ${ }^{9} \mathrm{Li}$-like core

The probability of neutron loss (removal) from ${ }^{11} \mathrm{Li}$

$$
\begin{equation*}
P_{\mathrm{loss}}(b, E)=\min \left\{P_{\mathrm{tr}}(b, E)+P_{\mathrm{cont}}(b, E), 1\right\} \tag{3}
\end{equation*}
$$

The probabilities of neutron transfer to unoccupied bound states (of discrete spectrum) of the ${ }^{28} \mathrm{Si}$

$$
\begin{equation*}
P_{\mathrm{tr}}(b, E)=\lim _{t \rightarrow \infty} \sum_{\substack{k \\ \varepsilon_{k}>E_{F}}}\left|a_{k}(t)\right|^{2} \tag{4}
\end{equation*}
$$

The probabilities of neutron transfer to states of continuous spectrum

$$
\begin{equation*}
P_{\mathrm{cont}}=C \max \left\{\int_{D} \rho(\mathbf{r}, t) d \mathbf{r}\right\} \tag{5}
\end{equation*}
$$

The total cross section for the reaction ${ }^{11} \mathrm{Li}+{ }^{28} \mathrm{Si}$: symbols are experimental data [1-3], curves are the results of the calculation for the values of the adjustable parameter $C=1$ (dashed line) and $C=2$ (solid line) with the probability $P_{\text {cont }}$ of transfer to the states of continuous spectrum calculated by formula (5)
[1] A.C. Villari et al., Phys. Lett. B 268, 345 (1991). [2] LI Chen et al., High Energy Physics and Nuclear Physics 31, 1102 (2007).
[3] R.E. Warner et al., Phys. Rev. C 54, 1700 (1996). [4] Yu. E. Penionzhkevich et al., NUCLEUS2018, Voronezh

5.1. Animation: probability density

 of outer neutrons for head-on collision ${ }^{40} \mathrm{Ca}+{ }^{96} \mathrm{Zr}$ at $E_{\text {c.m. }}=98 \mathrm{MeV}$and of two-center (2C) states [1]

interaction potential for nuclei ${ }^{40} \mathrm{Ca}$ and ${ }^{96} \mathrm{Zr}$

2C-states:

$1 f_{7 / 2}(\mathrm{Ca})$
$1 g_{9 / 2}(Z r)$

$$
2 p_{3 / 2}(\mathrm{Ca})
$$

These 2C-wave functions
[1] V. Samarin. Phys. Atom. Nucl. 78, 128 (2015).

$$
2 d_{5 / 2}(\mathrm{Zr})
$$

$$
\Omega=1 / 2
$$

-

$$
1 g_{7 / 2}(\mathrm{Zr})
$$ are" overlapping strongly. Most probable transition is $2 d_{5 / 2}\left({ }^{96} \mathrm{Zr}\right)$ to $2 p_{3 / 2}\left({ }^{40} \mathrm{Ca}\right)$

Ω is absolute value of the total-angular-momentum projection onto the nucleus-nucleus axis

$$
\Omega=3 / 2
$$ Calculation method:

$1 g_{7 / 2}(\mathrm{Zr})$
$2 p_{3 / 2}(\mathrm{Ca})$
$2 d_{5 / 2}(\mathrm{Zr})$
$\mathrm{kt}=11 \mathrm{t}=1.727 \mathrm{Ek}, \mathrm{bb}, \mathrm{rdist}$, sum1,2= $98.00 \quad 0.00 \quad 19.5700 .0000060 .997422$

5.2. Neutron levels in shell model of ${ }^{40} \mathrm{Ca},{ }^{90} \mathrm{Zr}$ and system ${ }^{40} \mathrm{Ca}+{ }^{90} \mathrm{Zr}$

[1]. L. Corradi et al., Phys. Rev. C 84, 034603 (2011).

5.3. Rearrangement of neutrons and initial stage of fusion

$\sigma_{f}(E$

Experimental data on the cross sections for fusion of nuclei in the reactions ${ }^{40} \mathrm{Ca}+{ }^{96} \mathrm{Zr}$ (empty circles) and ${ }^{40} \mathrm{Ca}+{ }^{90} \mathrm{Zr}$ (filled circles). Here V_{B} stands for the Coulomb barrier [1].
[1] M. Trotta et al., Phys. Rev. C 65, 011601 (R) (2001).
these 2C-wave functions are overlapping strongly. Most probable transition is $2 d_{5 / 2}\left({ }^{96} \mathrm{Zr}\right)$ to $\left.\mathbf{2 p} p_{3 / 2}{ }^{40} \mathrm{Ca}\right)$
probability density of outer neutrons

Fig. 5. (a) Probability density for neutrons of the $2 d_{5 / 2}^{6}$ outer shell in the ${ }^{96} \mathrm{Zr}$ nucleus (right-hand object) near the turning point in a central collision with a ${ }^{40} \mathrm{Ca}$ nucleus (left-hand object) at $E_{\text {c.m. }}=98 \mathrm{MeV} ;(b$ and $c)$ probability densities for the two-center states corresponding to the $2 d_{5 / 2}$ state of the ${ }^{96} \mathrm{Zr}$ nucleus (upper part) and the $2 p_{3 / 2}$ state of the ${ }^{40} \mathrm{Ca}$ nucleus (lower part) for the following absolute values of the total-angular-momentum projection onto the nucleus-nucleus axis (z axis): $\Omega=1 / 2(b)$ and $\Omega=3 / 2(c)$.

5.4. Rearrangement of neutrons and initial stage of fusion

Experimental data on the cross sections for fusion of nuclei in the reactions ${ }^{40} \mathrm{Ca}+{ }^{96} \mathrm{Zr}$ (empty circles) and ${ }^{40} \mathrm{Ca}+{ }^{90} \mathrm{Zr}$ (filled circles). Here V_{B} stands for the Coulomb barrier [1].
[1] M. Trotta et al., Phys. Rev. C 65, 011601 (R) (2001).

Quantum coupled channel + empirical neutron rearrangement (QCC+ENR) model [3]

Fusion cross section for ${ }^{40} \mathrm{Ca}+{ }^{96} \mathrm{Zr}$. The dotted curves show the nocoupling limit. The solid and dashed curves correspond to the calculation with (QCC + ENR model) and without (QCC model) taking into account neutron transfer, respectively [3].
[2] V.I. Zagrebaev, Phys. Rev. C 67, 061601 (2003).
[3] A.V. Karpov, V.A. Rachkov, V.V. Samarin, Phys. Rev. C, 92, 064603 (2015)
TDSE is the microscopic validation of empirical neutron rearrangement (ENR) and empirical coupled-channel (ECC) models.

5.5. Nucleons rearrangement in reaction ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$

The probability density for the protons of the ${ }^{40} \mathrm{Ca}$ nucleus with the initial states $1 d_{3 / 2}(\mathrm{a})$ and $2 s_{1 / 2}$ (b) and the probability density for the neutrons of the ${ }^{124} \mathrm{~S}$ n nucleus with the initial states $2 d_{3 / 2}$ (c) and $3 s_{1 / 2}(\mathrm{~d})$ at the closest approach of nuclei ${ }^{40} \mathrm{Ca}$ and ${ }^{124} \mathrm{Sn}$ in the collision with the energy in the center-of-mass system 128 MeV and the impact parameter 4 fm . The distance between the centers of the nuclei is 12 fm , the radii of the circles are equal to the radii of the nuclei.

5.6. Nucleon rearrangement and multineutron transfer in reaction ${ }^{40} \mathbf{C a}+{ }^{\mathbf{1 2 4}} \mathbf{S n}$

In the ${ }^{40} \mathrm{Ca}$ nucleus, there are six filled proton and neutron shells and in the ${ }^{124} \mathrm{Sn}$ nucleus 11 proton shells and 16 neutron shells are filled.

Evolution of the probability density of all nucleons of the nuclei ${ }^{40} \mathrm{Ca}$ and ${ }^{124} \mathrm{Sn}$ in collision with the energy in the center-of-mass system 128 MeV and the impact parameter $4 \mathrm{fm}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and 6 fm (d, e, f). The course of time corresponds to the panel locations (a, b, c) and (d, e, f).

5.7. Proton stripping and neutron pick-up in reaction ${ }^{40} \mathrm{Ca}+{ }^{124} \mathbf{S n}$

Conclusions

- The numerical solution of the time-dependent Schrödinger equation is applied to analysis of dynamics of nucleon transfer and rearrangement at energies near and above the Coulomb barrier.
- The evolution of wave functions of all nucleons is used for the description of neutron and proton transfer in reactions ${ }^{3,6} \mathrm{He}+{ }^{197} \mathrm{Au},{ }^{3} \mathrm{He}+{ }^{194} \mathrm{Pt}$, ${ }^{3,6} \mathrm{He}+{ }^{45} \mathrm{Sc},{ }^{9} \mathrm{Li}+{ }^{28} \mathrm{Si},{ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ and total cross sections of reactions ${ }^{11} \mathrm{Li}+{ }^{28} \mathrm{Si}$. The results of calculations of transfer cross sections are in satisfactory agreement with experimental data.
- The evolution of wave functions of outer neutrons is used for the microscopic validation of empirical neutron rearrangement (ENR) and empirical coupledchannel (ECC) models and explanation of energy dependence of fusion cross section for reaction ${ }^{40} \mathrm{Ca}+{ }^{96} \mathrm{Zr}$.

Acknowledgments
This work was supported by the Russian Science Foundation (RSF), research project No. 17-12-01170.

