Recent progress on extended Skyrme functionals (and it works!)

<u>A. Pastore</u>¹, P. Becker¹, D. Davesne², J. Navarro³

 1 University of York 2 Université de Lyon, F-69003 Lyon, France 3 IFIC (CSIC University of Valencia), Apdo. Postal 22085, E-46071 Valencia

September 6, 2018

(ロ) (部) (注) (注) (注)

Introduction: the nuclear chart

Nuclear chart

Atomic nucleus is the best example for *strange* quantum phenomena [J. Erler et al. (2012); Nature, 486(7404), 509.]

A simple model: Skyrme Nuclear-DFT

Global description of nuclear properties with ≈ 10 parameters.

Odd-even staggering in Hg nuclei

A sudden change in the potential energy surface (oblate/prolate)

- [B. Marsh,..., J.Dobaczewski, AP et al.; Nature Physics (accepted)]
- [S. Sels,..., J.Dobaczewski, AP et al. PRC (in preparation)]

How to determine the coupling constants?

We impose a fitting protocol (observables and pseudo-observables)

- IM properties (*i.e.* $E/A, K_{\infty}, m^*, ...$)
- Ground state of some nuclei (*i.e.* ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb, ...)
- Charge radii
- Spin orbit splitting
- ...

[M . Kortelainen et al. Phys. Rev. C89, 054314 (2014)]

Observable	UNEDF0	UNEDF1	UNEDF2	No.
E	1.428	1.912	1.950	555
E (A < 80)	2.092	2.566	2.475	113
$E (A \ge 80)$	1.200	1.705	1.792	442
S _{2n}	0.758	0.752	0.843	500
S_{2n} (A < 80)	1.447	1.161	1.243	99
$S_{2n} (A \ge 80)$	0.446	0.609	0.711	401
S_{2p}	0.862	0.791	0.778	477
S_{2p} (A < 80)	1.496	1.264	1.309	96
S_{2p} (A ≥ 80)	0.605	0.618	0.572	381
$\tilde{\Delta}_{n}^{(3)}$	0.355	0.358	0.285	442
$\tilde{\Delta}_{n}^{(3)}(A < 80)$	0.401	0.388	0.327	89
$\tilde{\Delta}_{n}^{(3)}$ $(A \ge 80)$	0.342	0.350	0.273	353
$\tilde{\Delta}_{p}^{(3)}$	0.258	0.261	0.276	395
$\tilde{\Delta}_{p}^{(3)}$ (A < 80)	0.346	0.304	0.472	83
$\tilde{\Delta}_{p}^{(3)}$ (A ≥ 80)	0.229	0.248	0.194	312
R _p	0.017	0.017	0.018	49
$\dot{R_{p}}(A < 80)$	0.022	0.019	0.020	16
$R_p (A \ge 80)$	0.013	0.015	0.017	- 33

Result

Skyrme functional can not further improved: need to go beyond. How?

Change many-body method!

Gogny D1M \rightarrow parameters adjusted using 5D collective Hamiltonian

[S. Goriely et al. Physical Review letters, 102(24), 24250]

Result

Major improvement on masses $\sigma_{mass} \approx 0.8$ MeV.... but still not perfect!

$$t_{12} = \delta(\mathbf{r}_1 - \mathbf{r}_2) t(\mathbf{k}', \mathbf{k}) \tag{3}$$

where k is the operator corresponding to the relative wave-number,

$$\mathbf{k} = \frac{1}{2}i(\nabla_1 - \nabla_2); \tag{4}$$

placed on the *right* of the delta-function \mathbf{k}' denotes the same operator placed on the *left*; this form was used in an earlier discussion⁸) of the spin-orbit potential. An ordinary static (Wigner) interaction would then be described by a *t* dependent only on $\mathbf{k}' - \mathbf{k}$.

It is generally believed that the most important part of the two-body interaction can be represented by a contact potential, i.e. by constant $t(\mathbf{k}', \mathbf{k})$; this suggests an expansion in powers of \mathbf{k}' and \mathbf{k} . If this expansion

Why 2nd order only?

We can remove the approximation of Skyrme and make the expansion beyond 2nd order

Taylor expansion of Gogny interaction

We can make a Taylor expansion of a finite range interaction

$$v_G^c(\mathbf{k},\mathbf{k}') = \sum_{n=1}^2 \left[W^n + B^{(n)} P_{\sigma} - H^{(n)} P_{\tau} - M^{(n)} P_{\sigma} P_{\tau} \right] \pi^{3/2} (\mu_n^{c,G})^3 e^{-(\mathbf{k}-\mathbf{k}')^2/4(\mu_n^{c,G})^2},$$

Mapping to N3LO by a formal Taylor expansion of a scalar function $F({\bf k}-{\bf k}')$

$$F(\mathbf{k} - \mathbf{k}') = C_0 + C_2(\mathbf{k} - \mathbf{k}')^2 + C_4(\mathbf{k} - \mathbf{k}')^4 + \cdots$$

= $C_0 + C_2 \left[\mathbf{k}^2 + \mathbf{k}'^2 - 2\mathbf{k}' \cdot \mathbf{k} \right]$
 $+ C_4 \left[(\mathbf{k}^2 + \mathbf{k}'^2)^2 + 4(\mathbf{k}' \cdot \mathbf{k})^2 - 4(\mathbf{k}' \cdot \mathbf{k})(\mathbf{k}^2 + \mathbf{k}'^2) \right] + \cdots$

Skyrme N2LO: Skyrme has more freedom than Gogny!!!

$$V_{\text{N2LO}}^{c} = t_{0}(1+x_{0}P_{\sigma}) + \frac{1}{2}t_{1}(1+x_{1}P_{\sigma})(\mathbf{k}^{2}+\mathbf{k}'^{2}) + t_{2}(1+x_{2}P_{\sigma})(\mathbf{k}\cdot\mathbf{k}') + \frac{1}{4}t_{1}^{(4)}(1+x_{1}^{(4)}P_{\sigma})\left[(\mathbf{k}^{2}+\mathbf{k}'^{2})^{2}+4(\mathbf{k}'\cdot\mathbf{k})^{2}\right] + t_{2}^{(4)}(1+x_{2}^{(4)}P_{\sigma})(\mathbf{k}'\cdot\mathbf{k})(\mathbf{k}^{2}+\mathbf{k}'^{2})$$

Partial wave expansion

A finite range interaction can be decomposed into an infinite sum of partial waves

Fast convergence!

Including D-wave we reproduce the same physics at saturation

Density Matrix Expansion (DME)

[G. Carlsson and J. Dobaczewski; Phys. Rev. Lett. (2013)]

Results

DME converges quite well at 4th order!!

Role of density-dependent term

[D. Lacroix et al; Physical Review C 79.4 (2009): 044318.]

- Density dependent (DD) term are used in all current pseudo-potential
- Multi-reference is OK for interactions with no DD terms:

) SV
$$\rightarrow$$
 2-body force $(m^* = 0.4)$

SLYMR0 \rightarrow 2- and 3-body force [J. Sadoudi et al. Phys. Rev. C 88.6 (2013): 064326.]

Important result

To have $m^* \approx 0.7$ (or more) we <u>need</u> a 3-body term (or density dependent one!)

[D. Lacroix et al; Physical Review C 79.4 (2009): 044318.]

The N*l*LO Skyrme interaction

N3LO

[F. Raimondi et al; Physical Review C 83.5 (2011): 054311]

N2LO in finite nuclei

A 4th order equation in spherical symmetry

Numerical solver in coordinate space: fast and accurate!

[P .Becker et al.; Physical Review C 96.4 (2017): 044330.]

WHISKY: 2 basis methods HFB code

²⁰⁸ Pb					
[MeV]	WHISKY	LENTEUR			
Total Energy	-1636.10 6	-1636.10 5			
Kinetic energy	3874.7 89	3874.7 95			
Field energy	-6209.6 42	-6209.6 50			
Spin-orbit	-99.081	-99.081			
Direct Coulomb	829.143	829.143			
Exchange Coulomb	-31.314	-31.314			

²⁰⁸ Pb					
[MeV]	WHISKY	MOCCA			
Total Energy	-1539.2 53	-1539.2 63			
Total energy N2LO	89. 278	89. 360			
$E[(\Delta \rho)^2]$	4.394	4.395			
$E[\rho Q]$	37.4 77	37.4 88			
$E[\tau^2]$	27.2 12	27.2 21			
$E[\tau_{\mu\nu}\tau_{\mu\nu}-\tau_{\mu\nu}\nabla_{\mu}\nabla_{\nu}\rho]$	19.855	19.8 61			
$E[K_{\mu\nu\kappa}K_{\mu\nu\kappa}]$	0.0546 0	0.0546 1			
$E[J_{\mu\nu}V_{\mu\nu}]$	0.3385 0	0.3385 8			

N3LO

Fitting protocol

Infinite nuclear matter			
ρ_{sat}	0.1600	0.001	fm ⁻³
$E/A(\rho_{sat})$	-16.0000	0.2	MeV
m^*/m	0.7000	0.02	
K_{∞}	230.00	10.00	MeV
J	32.00	2.00	MeV
EoS PNM			
$E/N (\rho = 0.1)$	11.88	2.0	MeV
E/N ($\rho=0.3$)	35.94	7.0	MeV
E/N (ρ=0.35)	44.14	9.0	MeV
Stability			
INM(S,M,T)	$ \rho_{crit} \ge 0.24 $	asymmetric	fm ⁻³
		constraint	
Finite nuclei			
Binding energies			
⁴⁰ Ca	-342.02300	1.5	MeV
⁴⁸ Ca	-415.98300	1.0	MeV
⁵⁶ Ni	-483.95300	1.5	MeV
¹⁰⁰ Sn	-825.13000	1.5	MeV
¹³² Sn	-1102.67300	1.0	MeV
²⁰⁸ Pb	-1635.86100	1.0	MeV
Proton radii			
⁴⁰ Ca	3.38282	0.03	fm
⁴⁸ Ca	3.39070	0.02	fm
⁵⁶ Ni	3.66189	0.03	fm
¹³² Sn	4.64745	0.02	fm
²⁰⁸ Pb	5.45007	0.02	fm
Parameter W_0	120.0	2.0	${ m MeV}~{ m fm}^5$
		Image: 1	A (1) > A (3)

A.Pastore

September 6, 2018 14 / 23

æ

Introducing SN2LO1

Valencia-Lyon-York fitting protocol

- Double magic nuclei
- Infinite matter properties
- Finite-size instabilities
- W₀ fixed (for the moment)

Natural Units						
$-C_0^{\rho}$	-1.06	C_1^{ρ}	0.754			
$C_0^{\rho}[\rho^{\alpha}]$	13.0	$C_1^{\rho}[\rho^{\alpha}]$	-12.1			
C_0^{τ}	0.892	C_1^{τ}	0.00624			
$C_0^{\Delta \rho}$	-1.06	$C_1^{\Delta \rho}$	0.382			
$C_0^{\nabla J}$	-1.22	$C_1^{\nabla J}$	-0.406			
C_0^T	-0.0882	C_1^T	-0.816			
$C_0^{(\Delta \rho)^2}$	-0.115	$C_1^{(\Delta \rho)^2}$	0.0396			
$C_0^{M\rho}$	-0.288	$C_1^{M\rho}$	0.143			
C_0^{Ms}	0.117	C_1^{Ms}	-0.0162			

Important remarks

- The coupling constants look natural (Grain of salt!!)
- We need further studies on naturalness

[Kortelainen, M., Furnstahl, R. J., Nazarewicz, W., Stoitsov, M. V. (2010). Phys. Rev. C, 82(1), 011304.

Finite-size instabilities

An empirical solution

• Use Linear Response to detect instabilities [Lesinski, T., et al. ; Phys. Rev. C 74.4

(2006): 044315.] [PA et al. Physics reports 563 (2015): 1-67.]

[De Pace, A., and M. Martini; Physical Review C 94.2 (2016): 024342.]

• Impose
$$ho_{pole} > 1.2
ho_{sat}$$

Infinite nuclear matter properties

	JN2LU1	SLYS	
$\rho_0 [\text{fm}^{-3}]$	0.162	0.1603	
$E/A(\rho_0)$ [MeV]	-15.948	-15.98	
K_{∞} [MeV]	221.9	229.92	
J [MeV]	31.95	32.03	
L [MeV]	48.9	48.15	
m^*/m	0.709	0.696	
		1	בוא ארם א

A.Pastore

< ∃⇒ September 6, 2018 17 / 23

э

Masses

Systematic comparison of binding energies for isotopic (isotonic) chains calculated with SN2LO1 and SLy5 parametrisation

Only even-even nuclei! SN2LO1 gives slightly worst results than SLy5.

18 / 23

Error analysis

	SN2LO1	SN2LO2	SLy5*	Last fit	%	
INM Properties	1.40	0.85	0.07	1.17		
Neutron matter	0.19	0.21	0.05	0.2		
Stability	5.04	6.72	5.32	3.09		
Nuclei	236.82	57.44	64.20	18.36	- 71 %	1
Proton radii	8.81	13.44	17.31	8.57	- 51 %	1
W ₀ Parameter	1.10	0.66	0.02	1.22		
Total χ^2	8.77	2.77	3.03	1.15	- 62 %	1

What new constraints ?

- · Nuclear channels
- Landau parameters
- · s.p. levels
- New nuclei, maybe with pairing or deformation

Results

- Special observables for higher order terms
- New statistical tools (Bootstrap/Gaussian Process Emulator)
- New interesting terms $C_1 l(l+1) + C_2 l^2 (l+1)^2 \rightarrow$ Candidate to change position high l states

Covariance matrix

- Different correlation structure
- Net terms <u>NOT</u> compatible with 0

Image: A mathematical states and a mathem

Summary and Conclusions

- We have produced the first N2LO parametrisation
- Very difficult fit higher order:
 - use of RPA in IM to avoid instabilities
 - need ad hoc observables
 - understand the role of new fields/densities
 - N3LO is also ready spherical/deformed
- New numerical code

The next step...

- Need new fitting protocol beyond modified Saclay-Lyon \rightarrow ideas for χ^2 ???
- Improving super-heavy nuclei spectroscopy
- Exploring excited states (joint PhD student York/Lyon/CEA)

THANK YOU

Charge radii

A.Pastore

September 6, 2018 21 / 23

A.Pastore

September 6, 2018 22 / 23

Better to compare with SLy5*

SN2LO1 \rightarrow same fitting protocol SLy5* (and same results!)

[Pastore, A., Davesne, D., Bennaceur, K., Meyer, J., and Hellemans, V. (2013); Phys. Scrip., 2013(T154), 014014.]