

Nuclear masses for nuclear structure and astrophysics

Anu Kankainen

Masses in nuclear landscape

Finland's oldest bedrock in Koli ~2.6 billion years old

Limits for nuclear existence

Which nuclei are bound?

Nuclear density functional theory with several Skyrme interactions: around 7000 bound nuclides with Z=2-120

J. Erler et al., Nature 486 (2012) 509

Nuclear masses: current status

Plotted with "The Colourful Nuclide Chart" by Ed Simpson http://people.physics.anu.edu.au/~ecs103/chart/

Nuclear astrophysics

Masses are key inputs for many nuclear astrophysics processes

Experimental vs theoretical mass values

Many r-process nuclei will remain experimentally inaccessible. Need theoretical models.

T. Eronen, A. Kankainen, J. Äystö, Progr. Part. Nucl. Phys. 91 (2016) 259

Large scatter between theoretical models after experimentally known region.

Experimental data needed for testing the models!

Kilonova associated with GW170817

→ NS-NS mergers <u>an astrophysical site</u> for the r process

D. Kasen et al., Nature 551 (2017) 80

Credit: NASA and ESA. Acknowledgment: A.J. Levan (U. Warwick), N.R. Tanvir (U. Leicester), and A. Fruchter and O. Fox (STScI)

Kilonova = thermal glow powered by radioactive decay of r-process nuclei

Impact on the r-process work?

GW170817 was the first observation of r process in NS-NS mergers.

- Was it a representative event?
- Are there other r-process sites?
- Still many uncertainties (neutrinos, nuclear physics,...) Talk by S. Goriely

" ...we found that **uncertainties in nuclear masses** and fission properties **need to be reduced** in order to better constrain the role of NS-NS mergers on the chemical evolution of r-process elements using LIGO/Virgo's detections." *B. Côté et al., ApJ 855 (2018) 99*

Nuclear masses still relevant (both experimental and theoretical)!

Nuclear structure probed by masses

Example:

two-neutron separation energies

Hundreds of Penning-trap mass measurements 2003-2016 (JYFLTRAP, ISOLTRAP, SHIPTRAP, CPT, TITAN..)

Better knowledge of the N=82 shell closure and the onset of deformation at N~60 (confirmed by laser spectroscopy)

Experimental methods to measure masses

Mass measurement techniques

	Method THIS TALK!	Precision (roughly)	T _{1/2} limit (roughly)
PENNING TRAPS	Time of Flight Ion Cyclotron resonance (TOF-ICR)	~1 - 50 keV 🕐	> 100 ms (typical)
	Phase-Imaging ICR	~1 - 20 keV 🕲	> 50 ms
	Fourier Transform ICR	~ 1 - 20 keV 🕲	
	Multi-Reflection TOF	~20 - 150 keV	> 10 ms
STORAGE	Schottky Mass Spectrometry	~1-50 keV	Cooling time >1 s
RINGS	Isochronous Mass spectrometry	~10 - <mark>200 ke</mark> V	> 10 µs
FRAGM. FACILITIES	TOF- Βρ	~300-500 keV	Below µs

Partly adopted from C.J. Horowitz et al., submitted to J. Phys. G, arXiv:1805.04637v1 [astro-ph.SR]

Ion motion in a Penning trap

THIS IS VALID BOTH FOR TOF-ICR AND PI-ICR METHODS

Comparison: TOF-ICR and PI-ICR

Conventional method

TOF-ICR

Faster and higher resolving power!

100 ms accumulation time

Masses of neutronrich rare-earth isotopes with JYFLTRAP at IGISOL

AL UNGER

Formation of the rare-earth peak in the r process

M. Mumpower et al., PRC 85 (2012) 045801. M. Mumpower et al., PPNP 86 (2016) 86.

E(2⁺) energies and a kink at N=100

IGISOL facility in the JYFL Accelerator Laboratory

IGISOL - a fast and universal method to produce radioactive beams J. Ärje, J. Äystö et al., PRL 54 (1985) 99

Measured nuclides

Measured with JYFLTRAP:

Six nuclides measured for the first time! On the edge of fission fragment distribution.

Two-neutron separation energies S_{2n}

Neutron separation energies S_n

۲

Neutron number N

Neutron pairing metrics D_n

M. Vilén et al., PRL 120, 262701 (2018)

Impact on the r-process calculations

Baseline: AME16 exp. + FRDM12 Neutron-capture rates: TALYS

Approaching ⁷⁸Ni via mass measurements

Mass measurements close to N=40 and N=50 at JYFLTRAP

Measured several new isotopes close to N=40 and N=50 at JYFLTRAP

L.C. Canete, S. Giraud, A. Kankainen, B. Bastin et al., in preparation

Isomeric states revealed

NUBASE $E^* = 0#(200#) \text{ keV}$ $I_{1/2} = 1.27(30) \text{ s}$ $E^* = 0#(200#) \text{ keV}$ $J^{\pi} = (3,4) \quad T_{1/2} = 637.7(55) \text{ ms}$ ME = -50976(7) keV

JYFLTRAP: TOF-ICR, T_{RF} = 1120 ms

JYFLTRAP: $T_{1/2}(g.s.) > T_{1/2}(m1)$

Two half-lives (TRISTAN): J. A. Winger et al, PRC 42, 954 (1990).

Mass of ⁷⁶Cu (ISOLTRAP): C. Guenaut et al., PRC 75, 044303 (2007); A. Welker et al., PRL 119, 192502 (2017).

Shape coexistence: ⁷⁹Zn^m (1/2⁺)

Systematics of N=49 isotones

X. F. Yang et al. PRL 116, 182502 (2016)

Summary and outlook

- Uncertainties in masses (both experimental and theoretical) need to be reduced in order to fully benefit from forthcoming multimessenger observations related to the r process
- Nuclear masses essential for understanding nuclear structure and can provide complementary data for decay and laser spectroscopy

THANK YOU!

Anu Kankainen, EuNPC 2018,

This work has been supported by the Academy of Finland under grants No. 275389 and 284516, and the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL). This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 771036 (ERC CoG MAIDEN).

FINI ANDE

Acknowledgements

IGISOL (Univ. of Jyväskylä) L. Canete, T. Eronen, A. Jokinen, I.D. Moore, D.A. Nesterenko, H. Penttilä, I. Pohjalainen, S. Rinta-Antila, A. de Roubin, M. Vilén, and J. Äystö and all the collaborators related to the discussed experiments!

Rare-earths: A. Aprahamian, M. Brodeur, J. Kelly, T. Kuta, W.S. Porter, R. Surman Univ. Of Notre Dame

M.R. Mumpower Los Alamos National Laboratory

⁷⁸Ni region: B. Bastin, S. Giraud et al., GANIL Established by the European Commission

European Research Council

ERC CoG MAIDEN

Societas Scientiarum Fennica - Finska Vetenskaps-Societeten

SUOMEN TIEDESEURA

UNIVERSITY OF JYVÄSKYLÄ

ACADEMY OF FINLAND

THE FINNISH SOCIETY OF SCIENCES AND LETTERS

