Nuclear astrophysics at the n_TOF facility: some key cases in low mass stars evolution...

Sergio Cristallo on behalf of the n_TOF collaboration

INFN – Sezione di Perugia INAF – Osservatorio Astronomico d'Abruzzo

INAF - Osservatorio Astronomico d'Abruzzo

Nuclear astrophysics at the n_TOF facility: some key cases in low mass stars evolution... and Neutron Stars Mergers

Sergio Cristallo on behalf of the n_TOF collaboration

INFN – Sezione di Perugia INAF – Osservatorio Astronomico d'Abruzzo

INAF - Osservatorio Astronomico d'Abruzzo

Solar System Abundances

A

A

The n_TOF facility

Neutron Time-Of-Flight facility: n_TOF

The n_TOF project

The advange of n_TOF are a direct consequence of the characteristics of the PS proton beam: high energy, high peak current, low duty cycle.

The s-process at n_TOF

A

Magic nuclei studied @ n_TOF

Isotopic ratios in pre-solar SiC grains: the case of ⁸⁸Sr

 $\delta(^{i}X/^{j}X) \equiv [(^{i}X/^{j}X)measured/(^{i}X/^{j}X)_{SUN} - 1] \times 1000$

Isotopic ratios in pre-solar SiC grains: the case of ⁸⁸Sr

 $\delta(^{i}X/^{j}X) \equiv [(^{i}X/^{j}X)measured/(^{i}X/^{j}X)_{SUN} - 1] \times 1000$

Magic nuclei: the case of ¹⁴⁰Ce

Abundances of

Straniero, Cristallo & Piersanti 2014

The pollution of AGB stars with a mass ranging between 3 to 6 M_{SUN} may account for most of the features of the *s*-process enrichment of M4 and M22.

elements in the 2nd s-process peak are well reproduced apart from Cerium.

Figure 13. Best fit of the average s-process chemical pattern of stars in M4.

GLOBULAR CLUSTERS

Magic nuclei: the case of ¹⁴⁰Ce

Abundances of

elements in the

s-process peak are

well reproduced

apart from Cerium.

[X/Fe]

0.5

0

The pollution of AGB stars with a mass ranging between 3 to 6 M_{SUN} may account for most of the features of the *s*-process enrichment of M4 and M22.

solid – $\Delta t = 149$ Myr IMF $\alpha = 2.35$ dashed – $\Delta t = 205$ Myr IMF $\alpha = -5$

M4 - M5

A

The solar s-only distribution

s-only isotopes @ n_TOF

 154 Gd = s-only isotope, it can be produced only via s process because it is shielded against the β -decay chains from the r-process region by its isobar 154 Sm

See talk by A.M. Mazzone

A very robust r-process pattern in metal-poor stars

- CS 31082-001: Hill et al. (2002)
- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

Fission recycling

This insensitivity of the strong r-process abundance pattern to the parameters of the merging system is explained by an extremely low- Y_e environment, which guarantees the occurrence of several fission cycles before the r-process freezes out.

Figure 5. Comparison of nuclear mass models FRDM, ETFSI-Q, and HFB-14. The underproduction of 140 < A < 160 nuclei apparent in the FRDM model does not occur in the ETFSI-Q or HFB-14 model cases. The fission fragment distribution model used here is ABLA07.

FRDM

Finite-Range Droplet Model Möller et al., 2016

ETSI-Q

Extended Thomas Fermi Model with Strutinsky Integral Pearson et al., 1996

HFB-14

Hartree-Fock-Bogoliubov Goriely et al., 2008, 2009

Eichler+ 2015

Fission in r-process calculations

Fission in astrophysical calculations:

- beta-delayed fission (Thielemann et al. 1983);
- spontaneous fission (Goriely & Clerbaux 1999; Freiburghaus et al. 1999; Cowan et al. 1999);
- neutron-induced fission (Panov & Thielemann 2003, 2004; Martínez-Pinedo et al. 2007).

The r-process at n_TOF

Independently on the channel, neutron-induced fission cross sections and fission yields of several actinides provide important data (fission barriers; level densities above barriers; etc.), which are needed to optimize (or validate) fission models for r-process nuclesynthesis.

r-process @ n_TOF

- ²³⁰Th(n,f) measuring
- ²³²Th(n,f) measured
- ²³³U(n,f) measured
- ²³⁴U(n,f) measured
- ²³⁵U(n,f) measured/ing
- ²³⁶U(n,f) measured
- ²³⁸U(n,f) measured
- ²³⁷Np(n,f) measured
- ²³⁸Pu(n,f) can be measured
- ²³⁹Pu(n,f) measuring

- ²⁴⁰Pu(n,f) measured
- ²⁴¹Pu(n,f) can be measured
- ²⁴²Pu(n,f) measured
- ²⁴¹Am(n,f) measured
- ²⁴³Am(n,f) measured
- ²⁴⁵Am(n,f) measured
- ²⁴⁴Cm(n,f) can be measured
- ²⁴⁵Cm(n,f) measured
- ²⁴⁶Cm(n,f) can be measured

TAKE HOME

- The study of neutron magic nuclei and s-only isotopes is of paramount importance for a detailed understanding of the s-process. <u>Neutron capture cross</u> <u>sections are essental inputs for stellar models</u>.
- Fission data are needed to properly calculate nuclear properties of isotopes far from the β stability valley. Therefore, <u>r-process distributions depend on the quality of available experimental data</u>.
- The n_TOF experiment at CERN may improve the physics of both the s-process (neutron capture data) and the r-process (fission data).