Role of pair-vibrational correlations in forming
the odd-even mass difference
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What are pair-vibrational correlations?
Pairing Hamiltonian

H=3) calai-GPP,  P=3% aa

Often treated in the BCS approximation. Exact solution exists.
Example: Bang, Krumlinde, Nucl. Phys. A 141, 18 (1970):
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Fig. 1. Ground-state corrclation energy (see text) as a function of G for a model of 32 equidistant
levels with 32 particles (uniform model). p is the density of levels.



Empirical evidence?

» Scarce because
phenomenological
parametrisations of the total
energy mostly allow neglecting
the vibrational correlations.

» Evidence from systematics of
“Wigner x"7

> Definition of x: For given A,

T(T +x
_B:EOJ'_%—’—ECOUU
~]0,2,4, A=0 mod 2,
"~ 11,3,5, A=2 mod 2,

B = binding energy.

Ecoul = Coulomb energy

T = isospin, here = (N — Z)/2.
Eo, 0, x constants.
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Model (1)
(Bentley, Neergard, Frauendorf, Phys. Rev. C 89, 034302 (2014);
Neergérd, Nucl. Theor. 36, 195 (2017).)

>

| 2

—B:E|_D—|—(SE7 0E = 0E;,,. + 0Egcs + Erpa.
E|p = energy of deformed liquid drop. 5 parameters, symmetry
terms o< T(T + 1) (Duflo, Zuker, Phys. Rev. C 52, 23 (1995)).

Deformations from previous Nilsson-Strutinskij calculation without
dErpa (Bentley, thesis (2010)).

> §E|n = Lin. — Eln etc.
» E . + Escs + Erpa = minimum of the Hamiltonian

H = Zn,p Eieiajai - GZ:n,p,np PTP’ P”P = \/%Z, zpdin

split into successive contributions of the first term (i.n. =
independent nucleons) and the BCS and RPA approximations to the
interaction energy. To escape the singularity of the RPA
contribution at G = G, it is interpolated in a narrow interval
round this G (narrower here than in our published work).

Nilsson single-nucleon levels ¢;. Labelled in increasing order by index
i. Parameters of Bengtsson, Ragnarsson, Nucl. Phys. A 436, 14
(1985).



Model (2)

» N and Z Cramers degenerate levels are included in the n and p BCS
and RPA calculations, [A/2] level of each kind in the np RPA
calculation. For odd N or Z the Fermi level is blocked.

> E‘,n L':_Bcs, I::RPA are “smooth” counter terms. They are given by
closed expressions in terms of smooth level densities &, p or np(€),
the pair coupling constant G and the numbers of participating
single-nucleon levels. g,,(€) is calculated from average levels.

» For odd N = Z, what is described so far models the lowest state
with isospin T = 0. The binding energy B* of the lowest state with
T =1 is calculated from that of the N + 1, Z — 1 ground state with
the liquid drop Coulomb displacement energy.

» G = G1A¢, where Gy, e minimise the total rms deviation from

%((B(N -1, N-1)+B(N+1,N+1))— B(N,N),
B(N,N)— B*(N,N), odd N >13.

(Arguments N, Z throughout.) For given G, e the liquid drop
parameters are determined by minimisation of the rms deviation
from the doubly even binding energies measured for

0 < N —Z <10. Above, when §Egpa was omitted, G, e were
optimised separately for this situation.



Odd A

» This model describes reasonably well the pattern of even-A binding
energies near N = Z as well as the excitation energies
B(N, N) — B*(N, N). The Wigner x shown earlier is an example.

> We now apply it to the nuclei with Z =N — 1 (odd A).

» §E(measured)
= —B(measured) — Ep. .

» The model reproduces these .
binding energies as well as
those for even A.

Energy / MeV/

» No new parameters were
introduced.




Odd-even mass difference

> Doen(N,Z) = 3(B(N —1,2Z) + B(N +1,2)) — B(N,Z), odd N.
Similarly for protons. AL T

» The model reproduces trends in
their measured variations albeit

crudely. % '
» The origin of very low 5
calculated values for N, Z = 25 °
at variance with the data and 08 % % @ %
for N = 49 remains to by fully 8,,241.2)
analysed. 2

Energy / MeV/




> The RPA contribution to Age n

is positive for N < 24. For

N > 24 it is mostly numerically
small and takes both signs. In
the upper sd shell it equals on
average 0.6 MeV, which is
about half of the total.

The RPA contribution to Age p
is predominantly positive. In
the upper sd shell it equals on
average 0.9 MeV, which is
about the total.

The figures show the gap
parameter A, o , for both the
odd nuclei and their doubly
even neighbours.

Eneray / MeV

Composition of the calculated Age n or p

B,y o(N; N—1), calculated

D—1D+in '—LD+m+ECS—LD+m+Bcs+RPA‘
5

Energy / MeV/
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D —D+in —LDH.chs—LD+in,+BCS+HPA‘

By

7\\;://5&
TR




Composition of the calculated Aqe o p (continued)

> Quite generally, the blocking of the odd orbit reduces A, o , in the
odd nucleus relative to its neighbours. An average of the fluctuating
Ap o p values very roughly gives Age por p in the absence of the RPA
correction.

> The signs of the RPA contributions to Age n or p Can be qualitatively
understood from the expression for ERPA,n, por np (Which | have not
shown). Apart from a T-dependent term in ERPA'np, which largely
matches a similar term in Egpa np, it can be written QG f(a), where
4Q is the valence space dimension and a = 1/(g(1)G). Here, X is a
smooth chemical potential. The function f(a) is negative and has a
minimum at a =~ 2.8. Blocking a Fermi level tends to increase the
effective a. In the upper sd shell, a is larger than 3.5, so f(a) has an
upwards slope, which makes Erpa sensitive to this blocking. Above
0Ca it descends to values about the minimum of f(a).



Sn isotopes, first attempt

» Turning now to the chain of Sn isotopes, we fit for given Gy, e the
liquid drop parameters to the binding energies measured for even N.

» However, 5 parameters are too many for a single isotopic chain.
Therefore, in the volume and surface energy coefficients, we fix the
ratios of the coefficient of T(T + 1) and the constant terms at their
values in a global fit, Mendoza-Temis, Hirsch, Zuker, Nucl. Phys. A
843, 14 (2010). This leaves 3 parameters.

> In a first attempt, Gy, e are 5 E(N,50), even N
inherited from the analysis of

the N = Z region:

G = 5.583A70:5908 eV

» The empirical minimum of 6E
at the N = 82 shell closure is
badly described.




Sn isotopes, second attempt

» A T-dependent attenuation
which preserves G(1%°Sn) is
added:

G = 5.583A70:6908 \jey
x (1 -10.0157)

» §E is now described equally
well for even N at both shell
closures.

> A is vastly overestimated.

Energy / MeV/

5 E(N, 50, even N
Measured —— Calculated
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Sn isotopes, third attempt

> A general attenuation is added: B (N 50)

leasured —— Calculated

G = 5.583A70:6908 \jey
x (1—0.015T) x 0.78 .

Energy / MeV/

°
&

» This brings Age n in place.

» The empirical §E is almost
perfectly reproduced for even

50 60 70 80 90
N

N 5 E(N,50), even N
» We now have two 2
determinations of G(1%°Sn) ‘

differing by 22%, from N = Z
nuclei and from Sn isotopes.
Most probably the first, which
is influenced by an
interpretation of incomplete
spectra of doubly odd nuclei
with A = 90, is too high.

Energy / MeV/




Second order phase transition

>

Our theory reproduces a 5 E(N,50), even N

“second order phase 08
transition” at N = 66 -t
discussed by Togashi et al.,  _ ..
Phys. Rev. Lett. 121,
062501 (2018).

The kink in the plot of JE 24
is related in the calculations ’
to the onset of oblate
deformations with the
entrance into the 1hy;/»
shell.

60 62 64 5‘[3‘ 68 70 72

Otherwise the calculated shapes are spherical. These findings
qualitatively agree with those of Togashi et al.

The empirical kink is badly described in our two first attempts. Thus
pairing is essential for its formation in the calculations.



Composition of the calculated A,

» The RPA contribution A 56, (. 50), calculated
tO Aoe’n |S pOSItIVG ‘ zl:iLD+i.n. LD+i.n+BCSiLD+\.n.+BCS+RPA‘
except for one very 15
R /:_77/’\\\\_,_
small negative value for N \// -—\//,,;_
. il ~
N = 65. This reflects 1

0.5
values of a larger than 3.

» On average, it is 8% of B /M/W
the total. 05

> It is largest near the A ) K % %
shell closures, where A,
vanishes.

Energy / MeV

» A, vanishes in the two closed shell nuclei and their odd neighbours.
Inside shells, an average of its fluctuating value again gives very
roughly Age , in the absence of the RPA correction.

» Note that the BCS contribution does not vanish in the closed shell
+1 nuclei only because the closed shell £2 nuclei have
non-vanishing A,,.



ErPA,np

The neutron-proton pair-vibrational correlation
energy Erpa np is expected to decrease numeri-
cally with increasing neutron excess because the
orbits of the excess neutrons are blocked to the
formation of neutron-proton pairs. Yet, in 40Sn
with T = 20 it is only reduced to half its value
in 190Sn with T = 0.

Eqpa,no ! MeV




Conclusions

v

A model was considered which is derived by Strutinskij
renormalisation from the Hamiltonian of nucleons in a Nilsson
potential well interacting by a pairing force that renders the
Hamiltonian isobarically invariant in the limit of equal spectra of
single neutrons and protons.

In this model, pair-vibrational correlations contribute mostly
positively to the odd-even mass difference Age p or p-

In Z = N — 1 nuclei in the upper sd shell, this contribution is about
half of Aqe,n and about all of Age p.

It decreases for Z = N — 1 with increasing A.

In almost all the odd-N Sn isotopes, it is positive and it amounts, on
average, to 8% of the total. It is largest near the shell closures due
to a reduction of the gap parameters A, o p.

In 140Sn with T = 20, the neutron-proton pair-vibrational correlation
energy remains half as large as in 1°°Sn with T = 0.



