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What are pair-vibrational correlations?

Pairing Hamiltonian

H =
∑

i
εia
†
i ai − G P†P, P = 1

2

∑
i
aı̄ai .

Often treated in the BCS approximation. Exact solution exists.
Example: Bang, Krumlinde, Nucl. Phys. A 141, 18 (1970):

Correlation energy

Mean field energy
G_crit



Empirical evidence?
I Scarce because

phenomenological
parametrisations of the total
energy mostly allow neglecting
the vibrational correlations.

I Evidence from systematics of
“Wigner x”?

I Definition of x : For given A,

−B = E0 +
T (T + x)

2θ
+ ECoul,

T =

{
0, 2, 4, A ≡ 0 mod 2,

1, 3, 5, A ≡ 2 mod 2,

B = binding energy.
ECoul = Coulomb energy
T = isospin, here = (N −Z )/2.
E0, θ, x constants.
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Model (1)
(Bentley, Neerg̊ard, Frauendorf, Phys. Rev. C 89, 034302 (2014);
Neerg̊ard, Nucl. Theor. 36, 195 (2017).)

I −B = ELD + δE , δE = δEi.n. + δEBCS + δERPA.

I ELD = energy of deformed liquid drop. 5 parameters, symmetry
terms ∝ T (T + 1) (Duflo, Zuker, Phys. Rev. C 52, 23 (1995)).

I Deformations from previous Nilsson-Strutinskij calculation without
δERPA (Bentley, thesis (2010)).

I δEi.n. = Ei.n. − Ẽi.n. etc.

I Ei.n. + EBCS + ERPA = minimum of the Hamiltonian

H =
∑

n,p

∑
i εia

†
i ai − G

∑
n,p,np P

†P, Pnp =
√

1
2

∑
i aı̄pain ,

split into successive contributions of the first term (i.n. =
independent nucleons) and the BCS and RPA approximations to the
interaction energy. To escape the singularity of the RPA
contribution at G = Gcrit, it is interpolated in a narrow interval
round this G (narrower here than in our published work).

I Nilsson single-nucleon levels εi . Labelled in increasing order by index
i . Parameters of Bengtsson, Ragnarsson, Nucl. Phys. A 436, 14
(1985).



Model (2)
I N and Z Cramers degenerate levels are included in the n and p BCS

and RPA calculations, dA/2e level of each kind in the np RPA
calculation. For odd N or Z the Fermi level is blocked.

I Ẽi.n., ẼBCS, ẼRPA are “smooth” counter terms. They are given by
closed expressions in terms of smooth level densities g̃n, p or np(ε),
the pair coupling constant G and the numbers of participating
single-nucleon levels. g̃np(ε) is calculated from average levels.

I For odd N = Z , what is described so far models the lowest state
with isospin T = 0. The binding energy B∗ of the lowest state with
T = 1 is calculated from that of the N + 1,Z − 1 ground state with
the liquid drop Coulomb displacement energy.

I G = G1A
e , where G1, e minimise the total rms deviation from

1
2 ((B(N − 1,N − 1) + B(N + 1,N + 1))− B(N,N),

B(N,N)− B∗(N,N), odd N ≥ 13 .

(Arguments N,Z throughout.) For given G1, e the liquid drop
parameters are determined by minimisation of the rms deviation
from the doubly even binding energies measured for
0 ≤ N − Z ≤ 10. Above, when δERPA was omitted, G1, e were
optimised separately for this situation.



Odd A

I This model describes reasonably well the pattern of even-A binding
energies near N = Z as well as the excitation energies
B(N,N)− B∗(N,N). The Wigner x shown earlier is an example.

I We now apply it to the nuclei with Z = N − 1 (odd A).

I δE (measured)
= −B(measured)− ELD.

I The model reproduces these
binding energies as well as
those for even A.

I No new parameters were
introduced.



Odd-even mass difference

I ∆oe,n(N,Z ) = 1
2 (B(N − 1,Z ) + B(N + 1,Z ))− B(N,Z ), odd N.

Similarly for protons.

I The model reproduces trends in
their measured variations albeit
crudely.

I The origin of very low
calculated values for N,Z = 25
at variance with the data and
for N = 49 remains to by fully
analysed.



Composition of the calculated ∆oe,n or p

I The RPA contribution to ∆oe,n

is positive for N < 24. For
N > 24 it is mostly numerically
small and takes both signs. In
the upper sd shell it equals on
average 0.6 MeV, which is
about half of the total.

I The RPA contribution to ∆oe,p

is predominantly positive. In
the upper sd shell it equals on
average 0.9 MeV, which is
about the total.

I The figures show the gap
parameter ∆n or p for both the
odd nuclei and their doubly
even neighbours.



Composition of the calculated ∆oe,n or p (continued)

I Quite generally, the blocking of the odd orbit reduces ∆n or p in the
odd nucleus relative to its neighbours. An average of the fluctuating
∆n or p values very roughly gives ∆oe,n or p in the absence of the RPA
correction.

I The signs of the RPA contributions to ∆oe,n or p can be qualitatively

understood from the expression for ẼRPA,n, p or np (which I have not

shown). Apart from a T -dependent term in ẼRPA,np, which largely
matches a similar term in ERPA,np, it can be written ΩG f (a), where

4Ω is the valence space dimension and a = 1/(g̃(λ̃)G ). Here, λ̃ is a
smooth chemical potential. The function f (a) is negative and has a
minimum at a ≈ 2.8. Blocking a Fermi level tends to increase the
effective a. In the upper sd shell, a is larger than 3.5, so f (a) has an
upwards slope, which makes ERPA sensitive to this blocking. Above
40Ca it descends to values about the minimum of f (a).



Sn isotopes, first attempt

I Turning now to the chain of Sn isotopes, we fit for given G1, e the
liquid drop parameters to the binding energies measured for even N.

I However, 5 parameters are too many for a single isotopic chain.
Therefore, in the volume and surface energy coefficients, we fix the
ratios of the coefficient of T (T + 1) and the constant terms at their
values in a global fit, Mendoza-Temis, Hirsch, Zuker, Nucl. Phys. A
843, 14 (2010). This leaves 3 parameters.

I In a first attempt, G1, e are
inherited from the analysis of
the N ≈ Z region:

G = 5.583A−0.6908 MeV

I The empirical minimum of δE
at the N = 82 shell closure is
badly described.



Sn isotopes, second attempt

I A T -dependent attenuation
which preserves G (100Sn) is
added:

G = 5.583A−0.6908 MeV

× (1− 0.015T )

I δE is now described equally
well for even N at both shell
closures.

I ∆oe,n is vastly overestimated.



Sn isotopes, third attempt

I A general attenuation is added:

G = 5.583A−0.6908 MeV

× (1− 0.015T )× 0.78

I This brings ∆oe,n in place.

I The empirical δE is almost
perfectly reproduced for even
N.

I We now have two
determinations of G (100Sn)
differing by 22%, from N = Z
nuclei and from Sn isotopes.
Most probably the first, which
is influenced by an
interpretation of incomplete
spectra of doubly odd nuclei
with A ≈ 90, is too high.



Second order phase transition

I Our theory reproduces a
“second order phase
transition” at N = 66
discussed by Togashi et al.,
Phys. Rev. Lett. 121,
062501 (2018).

I The kink in the plot of δE
is related in the calculations
to the onset of oblate
deformations with the
entrance into the 1h11/2

shell.

I Otherwise the calculated shapes are spherical. These findings
qualitatively agree with those of Togashi et al.

I The empirical kink is badly described in our two first attempts. Thus
pairing is essential for its formation in the calculations.



Composition of the calculated ∆oe,n

I The RPA contribution
to ∆oe,n is positive
except for one very
small negative value for
N = 65. This reflects
values of a larger than 3.

I On average, it is 8% of
the total.

I It is largest near the
shell closures, where ∆n

vanishes.

I ∆n vanishes in the two closed shell nuclei and their odd neighbours.
Inside shells, an average of its fluctuating value again gives very
roughly ∆oe,n in the absence of the RPA correction.

I Note that the BCS contribution does not vanish in the closed shell
±1 nuclei only because the closed shell ±2 nuclei have
non-vanishing ∆n.



ERPA,np

The neutron-proton pair-vibrational correlation
energy ERPA,np is expected to decrease numeri-
cally with increasing neutron excess because the
orbits of the excess neutrons are blocked to the
formation of neutron-proton pairs. Yet, in 140Sn
with T = 20 it is only reduced to half its value
in 100Sn with T = 0.



Conclusions

I A model was considered which is derived by Strutinskij
renormalisation from the Hamiltonian of nucleons in a Nilsson
potential well interacting by a pairing force that renders the
Hamiltonian isobarically invariant in the limit of equal spectra of
single neutrons and protons.

I In this model, pair-vibrational correlations contribute mostly
positively to the odd-even mass difference ∆oe,n or p.

I In Z = N − 1 nuclei in the upper sd shell, this contribution is about
half of ∆oe,n and about all of ∆oe,p.

I It decreases for Z = N − 1 with increasing A.

I In almost all the odd-N Sn isotopes, it is positive and it amounts, on
average, to 8% of the total. It is largest near the shell closures due
to a reduction of the gap parameters ∆n or p.

I In 140Sn with T = 20, the neutron-proton pair-vibrational correlation
energy remains half as large as in 100Sn with T = 0.


