Role of pair-vibrational correlations in forming the odd-even mass difference

Kai Neergård, Ian Bentley¹

¹Saint Mary's College, Notre Dame, Indiana, USA

2018 European Nuclear Physics Conference September 2nd-7th, 2018, Bologna, Italy

What are pair-vibrational correlations?

Pairing Hamiltonian

$$H = \sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i} - G P^{\dagger} P, \qquad P = \frac{1}{2} \sum_{i} a_{\bar{\imath}} a_{i}.$$

Often treated in the BCS approximation. Exact solution exists. Example: Bang, Krumlinde, Nucl. Phys. A 141, 18 (1970):

Fig. 1. Ground-state correlation energy (see text) as a function of G for a model of 32 equidistant levels with 32 particles (uniform model). ρ is the density of levels.

Empirical evidence?

- Scarce because phenomenological parametrisations of the total energy mostly allow neglecting the vibrational correlations.
- Evidence from systematics of "Wigner x"?

Definition of x: For given A,

$$-B = E_0 + \frac{T(T+x)}{2\theta} + E_{Coul},$$

$$T = \begin{cases} 0, 2, 4, & A \equiv 0 \mod 2, \\ 1, 3, 5, & A \equiv 2 \mod 2, \end{cases}$$

B = binding energy. $E_{\text{Coul}} = \text{Coulomb energy}$ T = isospin, here = (N - Z)/2. $E_0, \theta, x \text{ constants.}$

ヘロト 人間ト 人団ト 人団ト

-

Model (1)

(Bentley, Neergård, Frauendorf, Phys. Rev. C 89, 034302 (2014); Neergård, Nucl. Theor. 36, 195 (2017).)

- $\blacktriangleright -B = E_{\rm LD} + \delta E, \quad \delta E = \delta E_{\rm i.n.} + \delta E_{\rm BCS} + \delta E_{\rm RPA}.$
- ► E_{LD} = energy of deformed liquid drop. 5 parameters, symmetry terms $\propto T(T + 1)$ (Duflo, Zuker, Phys. Rev. C 52, 23 (1995)).
- ► Deformations from previous Nilsson-Strutinskij calculation without δE_{RPA} (Bentley, thesis (2010)).

$$\bullet \ \delta E_{\text{i.n.}} = E_{\text{i.n.}} - \tilde{E}_{\text{i.n.}} \text{ etc.}$$

• $E_{i.n.} + E_{BCS} + E_{RPA} = minimum of the Hamiltonian$

$$H = \sum_{n,p} \sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i} - G \sum_{n,p,np} P^{\dagger} P, \quad P_{np} = \sqrt{\frac{1}{2}} \sum_{i} a_{\overline{\imath}p} a_{in},$$

split into successive contributions of the first term (i.n. = independent nucleons) and the BCS and RPA approximations to the interaction energy. To escape the singularity of the RPA contribution at $G = G_{crit}$, it is interpolated in a narrow interval round this G (narrower here than in our published work).

Nilsson single-nucleon levels e_i. Labelled in increasing order by index
 i. Parameters of Bengtsson, Ragnarsson, Nucl. Phys. A 436, 14 (1985).

Model (2)

- N and Z Cramers degenerate levels are included in the n and p BCS and RPA calculations, $\lceil A/2 \rceil$ level of each kind in the *np* RPA calculation. For odd N or Z the Fermi level is blocked.
- \blacktriangleright \tilde{E}_{in} , \tilde{E}_{BCS} , \tilde{E}_{RPA} are "smooth" counter terms. They are given by closed expressions in terms of smooth level densities $\tilde{g}_{n, p \text{ or } np}(\epsilon)$, the pair coupling constant G and the numbers of participating single-nucleon levels. $\tilde{g}_{np}(\epsilon)$ is calculated from average levels.
- For odd N = Z, what is described so far models the lowest state with isospin T = 0. The binding energy B^* of the lowest state with T = 1 is calculated from that of the N + 1, Z - 1 ground state with the liquid drop Coulomb displacement energy.
- $G = G_1 A^e$, where G_1 , e minimise the total rms deviation from $\frac{1}{2}((B(N-1, N-1) + B(N+1, N+1)) - B(N, N)))$ $B(N,N) - B^*(N,N)$, odd $N \geq 13$.

(Arguments N, Z throughout.) For given G_1, e the liquid drop parameters are determined by minimisation of the rms deviation from the doubly even binding energies measured for $0 \leq N - Z \leq 10$. Above, when δE_{RPA} was omitted, G_1, e were optimised separately for this situation.

Odd A

- ► This model describes reasonably well the pattern of even-A binding energies near N = Z as well as the excitation energies B(N, N) B*(N, N). The Wigner x shown earlier is an example.
- We now apply it to the nuclei with Z = N 1 (odd A).
- δE (measured) = -B(measured) $- E_{LD}$.
- The model reproduces these binding energies as well as those for even A.
- No new parameters were introduced.

Odd-even mass difference

► $\Delta_{\text{oe},n}(N,Z) = \frac{1}{2}(B(N-1,Z) + B(N+1,Z)) - B(N,Z), \text{ odd } N.$ Similarly for protons.

- The model reproduces trends in their measured variations albeit crudely.
- The origin of very low calculated values for N, Z = 25 at variance with the data and for N = 49 remains to by fully analysed.

Composition of the calculated $\Delta_{oe,n \text{ or } p}$

- The RPA contribution to $\Delta_{\text{oe},n}$ is positive for N < 24. For N > 24 it is mostly numerically small and takes both signs. In the upper *sd* shell it equals on average 0.6 MeV, which is about half of the total.
- The RPA contribution to Δ_{oe,p} is predominantly positive. In the upper sd shell it equals on average 0.9 MeV, which is about the total.
- The figures show the gap parameter Δ_{n or p} for both the odd nuclei and their doubly even neighbours.

Composition of the calculated $\Delta_{oe,n \text{ or } p}$ (continued)

- Quite generally, the blocking of the odd orbit reduces Δ_{n or p} in the odd nucleus relative to its neighbours. An average of the fluctuating Δ_{n or p} values very roughly gives Δ_{oe,n or p} in the absence of the RPA correction.
- ► The signs of the RPA contributions to $\Delta_{oe,n \text{ or } p}$ can be qualitatively understood from the expression for $\tilde{E}_{\text{RPA},n, p \text{ or } np}$ (which I have not shown). Apart from a *T*-dependent term in $\tilde{E}_{\text{RPA},np}$, which largely matches a similar term in $E_{\text{RPA},np}$, it can be written $\Omega G f(a)$, where 4Ω is the valence space dimension and $a = 1/(\tilde{g}(\tilde{\lambda})G)$. Here, $\tilde{\lambda}$ is a smooth chemical potential. The function f(a) is negative and has a minimum at $a \approx 2.8$. Blocking a Fermi level tends to increase the effective *a*. In the upper *sd* shell, *a* is larger than 3.5, so f(a) has an upwards slope, which makes E_{RPA} sensitive to this blocking. Above ⁴⁰Ca it descends to values about the minimum of f(a).

Sn isotopes, first attempt

- Turning now to the chain of Sn isotopes, we fit for given G₁, e the liquid drop parameters to the binding energies measured for even N.
- ▶ However, 5 parameters are too many for a single isotopic chain. Therefore, in the volume and surface energy coefficients, we fix the ratios of the coefficient of T(T + 1) and the constant terms at their values in a global fit, Mendoza-Temis, Hirsch, Zuker, Nucl. Phys. A 843, 14 (2010). This leaves 3 parameters.
- In a first attempt, G₁, e are inherited from the analysis of the N ≈ Z region:

 $G = 5.583 A^{-0.6908} \text{ MeV}$

The empirical minimum of δE at the N = 82 shell closure is badly described.

Sn isotopes, second attempt

► A *T*-dependent attenuation which preserves *G*(¹⁰⁰Sn) is added:

$$G = 5.583 A^{-0.6908} \,\, {
m MeV} \ imes (1 - 0.015 \, T)$$

- δE is now described equally well for even N at both shell closures.
- $\Delta_{oe,n}$ is vastly overestimated.

Sn isotopes, third attempt

A general attenuation is added:

 $G = 5.583 A^{-0.6908} \text{ MeV} \ imes (1 - 0.015 T) imes 0.78$

- This brings $\Delta_{oe,n}$ in place.
- The empirical δE is almost perfectly reproduced for even N.
- ▶ We now have two determinations of $G(^{100}Sn)$ differing by 22%, from N = Znuclei and from Sn isotopes. Most probably the first, which is influenced by an interpretation of incomplete spectra of doubly odd nuclei with $A \approx 90$, is too high.

Second order phase transition

- Our theory reproduces a "second order phase transition" at N = 66 discussed by Togashi *et al.*, Phys. Rev. Lett. 121, 062501 (2018).
- The kink in the plot of δE is related in the calculations to the onset of oblate deformations with the entrance into the $1h_{11/2}$ shell.

- Otherwise the calculated shapes are spherical. These findings qualitatively agree with those of Togashi *et al.*
- The empirical kink is badly described in our two first attempts. Thus pairing is essential for its formation in the calculations.

Composition of the calculated $\Delta_{\text{oe},n}$

- The RPA contribution to $\Delta_{oe,n}$ is positive except for one very small negative value for N = 65. This reflects values of *a* larger than 3.
- On average, it is 8% of the total.
- It is largest near the shell closures, where Δ_n vanishes.

- Δ_n vanishes in the two closed shell nuclei and their odd neighbours. Inside shells, an average of its fluctuating value again gives very roughly Δ_{oe,n} in the absence of the RPA correction.
- Note that the BCS contribution does not vanish in the closed shell ±1 nuclei only because the closed shell ±2 nuclei have non-vanishing Δ_n.

$E_{\text{RPA},np}$

The neutron-proton pair-vibrational correlation energy $E_{\text{RPA},np}$ is expected to decrease numerically with increasing neutron excess because the orbits of the excess neutrons are blocked to the formation of neutron-proton pairs. Yet, in ¹⁴⁰Sn with T = 20 it is only reduced to half its value in ¹⁰⁰Sn with T = 0.

(日) (四) (王) (日) (日) (日)

Conclusions

- A model was considered which is derived by Strutinskij renormalisation from the Hamiltonian of nucleons in a Nilsson potential well interacting by a pairing force that renders the Hamiltonian isobarically invariant in the limit of equal spectra of single neutrons and protons.
- In this model, pair-vibrational correlations contribute mostly positively to the odd-even mass difference Δ_{oe,n or p}.
- In Z = N − 1 nuclei in the upper sd shell, this contribution is about half of Δ_{oe,n} and about all of Δ_{oe,p}.
- It decreases for Z = N 1 with increasing A.
- In almost all the odd-N Sn isotopes, it is positive and it amounts, on average, to 8% of the total. It is largest near the shell closures due to a reduction of the gap parameters Δ_{n or p}.
- ▶ In ¹⁴⁰Sn with T = 20, the neutron-proton pair-vibrational correlation energy remains half as large as in ¹⁰⁰Sn with T = 0.