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Introduction

e The nuclear level density p(E) is a characteristic property of every nucleus
and it is defined as the number of levels per unit energy at a certain

p(F) =dN/dE

e Itis the number of different ways in which individual nucleons can be placed

excitation energy.

in the various single particle orbitals such that the excitation energy lies in
the range E to E+dE. It increases rapidly with excitation energy.

e Intheindependent-particle model, the nuclear level density is determined
from the neutron and proton single-particle level densities. This single-
particle level density can be subdivided into compound-nucleus and gas
components.

o The nuclear level density p is an essential ingredient in calculating the
statistical decay of a compound nucleus by particle evaporation, y -ray
emission, or fission.

e
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Introduction - compound nucleus

The “compound nucleus”is a state in which the excitation energy is distributed
statistically among all the available degrees of freedom. Only as the result of a

very rare fluctuation, all the excitation energy could be again

concentrated on a single particle, which will then be able &

to leave the nucleus, which has no memory of the
original reaction
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It was known experimentally that the
lowest excited states in heavy nuclei had

energies of order a few hundred keV above the ground
state. Bohr expected these low-lying states to reflect the
normal modes of motion (surface, compressive modes,
and collection rotation) of the nuclear substance.

With increasing excitation energy, the number of ways in
which the total energy can be divided among these
different modes increase exponentially and therefore the
level density of the quantum states of the compound

nucleus will increase
N. Bohr, Nature 137, 344 (1936)
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Introduction - compound nucleus

The levels of a nucleus can be divided into two
regions. This division arises naturally from the
different approaches employed for their
analysis: the spectroscopical approach for the
low energy levels and the statistical approach
for the high energy levels. The low-lying
nuclear excited levels are small in number,
well separated, and rather simple in structure.

With increasing excitation energy, the spacing
between the levels is progressively reduced.
The existence of such complex levels is
illustrated by the neutron-capture
resonances. Their average spacing is about 106
times smaller than the average single-particle
level spacing, and their widths are also 106
times smaller than expected for a single
partlcle excitation.
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Introduction (a simple derivation) -

A simple result can be obtained within the independent-particle model. It starts with
sets of single-particle levels for both neutrons and protons. The determination of
the nuclear level density is essentially a combinatorial problem, i.e., determining

how many ways these single-particle levels can be occupied to give the desired total
excitation energy.

0lnZ
Nucleon number A = . = Z i
(E%) exp S oo :
P — dlnZ
2w/ D Totalenergy E = Eg+ E™ = 58 = Zgi Ji

where f are the average occupancy of a
single particle level

Entropy S = BE — alN + IHZ(@aﬁ)
SZZSi

si=—filnfi — (1 — fi)In(1 = f;)

Charlty and Sobotka, PRC 71, 024310 (2005)

‘Self co;15|stent nuclear state densities at high energy DIP. FISICA ED ASTRONOMIA - UNIVERSITA DI BOLOGNA




Introduction (a simple derivation) N

A simple result can be obtained within the independent-particle model. It starts
with sets of single-particle levels for both neutrons and protons. The
determination of the nuclear level density is essentially a combinatorial

problem, i.e., determining how many ways these single-particle levels can be
occupied to give the desired total excitation energy.

At the saddle point

InZ = In[l + exp(a — B¢;)]

9%1In Z
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92InZ
dB o

Charlty and Sobotka, PRC 71, 024310 (2005)
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Introduction (general definition)

AUGUST 15, 1936 PHYSICAL REVIEW VOLUME 50

An Attempt to Calculate the Number of Energy Levels of a Heavy Nucleus

H. A. BETHE, Cornell University
(Received June 5, 1936)

Although the previous formula can be derived without recourse to statistical
mechanics, Bethe realized there is a close analogy to the problem of a Fermi gas in
contact with a heat bath of temperature T = 1/f3 and with chemical potential p.

Zis the grand partition function, S is the entropy, and thus 1/ T = dS/dE*.

Zec(B, ) = Trexp[—BH + aN]
cel Zac(B, a Z f p(E,N)e PEteNJE
Eo

27
(EN 471_2/ / GC,@-}—ZS(X—I-Z(b)

< e—-—(a+z¢)N+(ﬂ+zs)Ed¢d8.
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Introduction (a common approach) -

The Fermi gas model in its various modifications is widely used for calculation of the
nuclear level density. This model enables simple systematics to be established based
on normalization of the energy dependence of the nuclear level density to data on
the cumulative numbers of low-lying levels and the average spacings between S-
wave heutron resonances at the neutron binding energy (Bn) in the nucleus.

However, the level density parameter a and excitation energy shift ., caused by
even-odd differences in the nuclei, are considered free parameters. Since the d.¢
values obtained for odd-odd nuclei are negative, this approximation has been
termed the back-shifted Fermi gas model.

total level densit
“(U) 11 eXp [2\/%((] - ieff)}
PAY) = 1/4
ogal/ - 5/4
2v2o (U= e
a is the level density parameter the excitation energy shift é.# is caused
STUDN associated with the density of single by even-odd differences in the nuclei

particle states near the Fermi energy;
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Introduction (experimental sources)

Neutron resonances

In this type of experiment the nuclear energy levels are
observed at an energy just exceeding the neutron
binding energy, and the number of levels is obtained
by counting the resonances in a particular neutron
energy interval. It is necessary in such experiments that
the width I of each level be less than the level spacing
A and that the experimental resolution be good

enough to resolve individual levels.

Inelastic scattering and nuclear

reactions to resolved levels

The resolution obtained in these experiments is orders
of magnitude poorer than that achieved with s-wave
neutron spectroscopy. With such experiments, it is
possible to study isolated levels up to an excitation
energy of approximately 5 to 6 MeV for a nucleus with
atomic mass around 60. Typical nuclear reactions are

z—f{,the (p, p"), (0, n’), (a, a’) and (p, a) reactions.

and others...

Self-consistent nuclear state densities at high energy
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Frozen bound states

e EXPTLD
= THETLD (p,,)

— THETLD (K" p,y,)

Vi

RSN
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Relativistic mean field (I) =

Finelli et al., PRC 66, 024306 (2002)

meson field
Lagrangian density
— L 1 —73
L= 1 [W“ﬁu — M — go0 — gu Y wy — gV T - P — ey Ay 5 ] (0
1., 1 120 = B
+ 5(‘9 00,0 —Us(0) — ZQ Q4+ Uy(wy) — ZR Ry +U,(pu)
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Relativistic mean field (Il)

Finelli et al., PRC 66, 024306 (2002)

=110 (@e) =

1=1

Mean field

Ermr(p, ¢) =(®|H|®)

1
= / A’z Tr [5 Y P+ M+ goo+ guw v+ gpT - puyt + 56(1 - 73)AM’YM) P]
1o s B
ZR Ry — Up(py) + 7FFpu

1 1
+ /d?’x {—5(‘9“08“0 + Uy (o) + ZQWQW — Uy(wy) + 1

Spinor wave function for
spherical symmetry

central potential
- f) Fr 4 (M + S(r) + V(r) G,

i ko d K - -
wamm( ) = B " ]m(97¢)Xta( ) €C¥Foz — +% + ;) Go{ o (M :|— S(fr)._ V(T)).Fom
Fg(r) . spin-orbit potential
T
S(r) = g,0,
, 1
V(T) =  JuwWo T gp73p8 -+ 56(1 — 7_S)AO-
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Relativistic mean field (lll) -

Finelli et al., PRC 66, 024306 (2002)
Density-dependent extension

9i(pv) = gi(psat) fi(x) filw) TG+ d)
E/A (MeV) ren (fm) rn — Tp (fm) Jdp = gp(psat) eXp[_a,O(:C o 1)]
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Relativistic mean field (finite T)

The temperature dependent equations are derived by the minimization of
the thermodynamical potential Q,
O=E—TS—uN

where E being the energy, T is the thermodynamic temperature which is
introduced through the statistical Fermi occupation probabilities nj

L 1—1 20 2081, i
1+ exp| ——— | _
n;— CXP D .
| kT |
. —20r neutron .
= A
=
SZ—Z [n;Inn;+(1—n)In(1—n;)| -} :
l i Vi
—B0F ™Y _ ¥/ ——— T=3 MeV -
” | T e T=1.5 MeV |
E*(T)=E(T)—E(T=0) I .
i \Garp_bhir, Maharana, Lalazissis, Panos, and P. Ring, PRC 62 054610 (2000) r (fm)
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Subtraction method
Bonche-Levit-Vautherin procedure

A vapor subtraction procedure is used to account for unbound states and
to remove long range Coulomb repulsion between the hot nucleus and
the gas as well as the contribution of the external nucleon gas.

Nucleus + vapor vapor

“—-. ‘

Bonche, Levit, and Vautherin, NPA 427, 278 (1984); 436, 265 (1985)
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Subtraction method

Bonche-Levit-Vautherin procedure

They observed that the mean field equations have two solutions for a given chemical
potential and temperature. One of these can be associated with a nucleus in

equilibrium with the evaporated nucleons (nucleus+gas) while the other consists
of a gas of nucleons alone.

They determined the properties of the hot nucleus in terms of the difference
between quantities associated with the the nucleus+gas and those of the gas.

Formally, this is done by defining a subtracted thermodynamic potential as the
difference between that of the nucleus+gas and that of the gas, with the exception

of the Coulomb contribution. In particular, the baryon and proton numbers of the
hot nucleus are then

A = /d3r [,OB,n—I—g(’_;) — /OB,g(’_;)]a

7 — / &r [ppnse®) — ppo(P)].

5 zg Bonche, Levit, and Vautherin, NPA 427, 278 (1984); 436, 265 (1985)
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Subtraction method

Bonche-Levit-Vautherin procedure

The Coulomb contribution to the thermodynamic potential must be treated
differently due to its long range. The Coulomb term must be modified in order
that the only contribution is from protons in the hot nucleus. This is done by
replacing the difference between the two Coulomb contributions in the

thermodynamic potential by a term taking into account only the contribution of
those protons,

1 > -/ = =/
5[ d3l’[/0p,n—|-g(r)VC:0p,n—l—g(r )_ pp,g(r)vcpp,g(r )]

1 . ,
- / P {[opnte(F) — ppo(FIVe

X [/Op,n—kg(?/) T pp,g(?/)]}-

Note that, with this substitution, the evaporated protons of the nucleon+gas and
gas solutions are still subject to the Coulomb repulsion of the hot nucleus, as would
e ~/\xpected for protons leaving the hot system.

A Bonche, Levit, and Vautherin, NPA 427, 278 (1984); 436, 265 (1985).
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Bound-state method

A simpler approach would be to F
consider a fixed number of single

()
particle states, at finite T, to calculate p. %
~or this works we selected all the é
pound states and the proton states 3
below the Coulomb and centripetal 3 Coulomb +
parrier (but with zero widths, so far) o centripetal barrier
Non negligible widths 3 %
=

9)a.0sIp
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Preliminary results
160’ 40Ca, 60Ni’ 9OZr, 114Sn, and 208Pb
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B eNnC h mayr k Fermi-Gas Model Parametrization 20

of Nuclear Level Density
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—— Subtraction method, ddmel interaction

40 ' binding energy '
a —— Subtraction method, nl3* interaction

e weak dependence on the interaction
(non-linear vs. density dependent)

e logio density of states substantially
underestimated respect to
phenomenological approaches

e no appreciable differences between
the two methods
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——  Subtraction method, ddmel interaction
— — Bound state method. nl3* interaction

60 1 o binding energy l
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B — — Bound state method. ddmel interaction ]

e weak dependence on the interaction
(non-linear vs. density dependent)

e logio density of states closer to
phenomenological estimates

e appreciable differences between the
two methods for higher excitation
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QOZr

e weak dependence on the interaction
(non-linear vs. density dependent)

e logio density of states substantially
underestimated respect to
phenomenological approaches

e appreciable differences between the
two methods for higher excitation
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208Pb
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Pb-208

Subtraction method, ddmel interaction
Subtraction method, nl3* interaction
Bound state method. ddmel interaction
Bound state method. nl3* interaction
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Open issues

1. Importance of the effective mass
Non negligible widths for resonance states

Corrections for low excitation energies

> W N

Extension of the combinatorial approach to

higher energies
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Our project
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Extensions - CSM (work in progress) -

Complex scaling method
Y. K. Ho, Phys. Rep. 99, 1 (1983); A. T. Kruppa et al., Phys. Rev. C 37, 383 (1988); Guo et al., CPC 181, 500 (2010),
Guo et al.,, PRC 82,034318 (2010)

The starting point of the CSM is a transformation of the Hamiltonian H. First one defines the
unbounded non-unitary scaling operator U(0) where 0 is real

The transformed complex scaled Hamiltonian is of the form

V(frew) + S(rew) + M e_w( dd,r
e_ie(d% + % + =) V(ret) — S(re¥)

Hy =

The corresponding complex scaled equation is

STy Hotpg = €grpg

ek |
elf-consistent nuclear state densities at high energy DIP. FISICA ED ASTRONOMIA - UNIVERSITA DI BOLOGNA




Extensions - CSM (work in progress) “

Complex scaling method
Y. K. Ho, Phys. Rep. 99, 1 (1983); A. T. Kruppa et al., Phys. Rev. C 37, 383 (1988); Guo et al., CPC 181, 500 (2010),

Guo et al.,, PRC 82,034318 (2010)

e A bound state eigenvalue of H remains also an eigenvalue of He

e Aresonance pole € =E -il'/2 of the Green-operator of H is an eigenvalue
of Ho

e The continuous part of the spectrum of He is rotated down into the
complex energy plane by the angle 6

mag, {F) scattering states (6=0)

> Real (E)

y OL 4 29 @-—resonance
states .

continuum
states
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Extensions - PVC (work in progress) “

Litvinova and Ring, PRC 73, 44328 (2006), Ring talk @ 2011 KLFTP-BLTP Joint Workshop

Z:S—I;V—I—Z‘(w)

RPA-modes
mean field pole part
H
= —— + —
Dyson equation
Dyson-equation +
H
5 RMF  RMF+PVC  EXP 49 , RMF  RMF+PVC  EXP
343/2. ] 312
1 4s12 .. 2o 3p32-...
. f 0 11512 ——. : gdgg o] 262 —, gg;g
1 2g712 p— 29 7302 ' e —
The density of states dam ==t mm—_——— =
12002 T e {152 - 20712
above and below the _ e —— e T
> g o 6
0 -6
: : s 7 2. | S ) )
Fermi surface is R S — e T B —
o 1111302 o~ S 3P3/2 109 1h1172 oo ————— ———12215%2
increased R e s T
44 - - 1h912 14 -
1 , { 1972 -+ri——
[T S 164
14 4
Neutron states in “*Pb Proton states in “*Pb
U . _—
O\ g mgy 0.76 0.92 1.0 0.71 0.85 1.0
A\ 1z Z |

DIP. FISICA ED ASTRONOMIA - UNIVERSITA DI BOLOGNA



Thank you very much
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