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Introduction
• The nuclear level density ρ(E) is a characteristic property of every nucleus 

and it is defined as the number of levels per unit energy at a certain 
excitation energy.  

• It is the number of different ways in which individual nucleons can be placed 
in the various single particle orbitals such that the excitation energy lies in 
the range E to E+dE. It increases rapidly with excitation energy.  

• In the independent-particle model, the nuclear level density is determined 
from the neutron and proton single-particle level densities. This single-
particle level density can be subdivided into compound-nucleus and gas 
components.  

• The nuclear level density ρ is an essential ingredient in calculating the 
statistical decay of a compound nucleus by particle evaporation, γ -ray 
emission, or fission.

⇢(E) = dN/dE
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The “compound nucleus” is a state in which the excitation energy is distributed 
statistically among all the available degrees of freedom. Only as the result of a 
very rare fluctuation, all the excitation energy could be again  
concentrated  on a single particle, which will then be able  
to leave the nucleus, which has no memory of the  
original reaction

Introduction - compound nucleus

N. Bohr, Nature 137, 344 (1936)

It was known experimentally that the  
lowest excited states in heavy nuclei had  
energies of order a few hundred keV above the ground 
state. Bohr expected these low-lying states to reflect the 
normal modes of motion (surface, compressive modes, 
and collection rotation) of the nuclear substance. 

With increasing excitation energy, the number of ways in 
which the total energy can be divided among these 
different modes increase exponentially and therefore the 
level density of the quantum states of the compound 
nucleus will increase
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The levels of a nucleus can be divided into two 
regions. This division arises naturally from the 
different approaches employed for their 
analysis: the spectroscopical approach for the 
low energy levels and the statistical approach 
for the high energy levels. The low-lying 
nuclear excited levels are small in number, 
well separated, and rather simple in structure. 

With increasing excitation energy, the spacing 
between the levels is progressively reduced. 
The existence of such complex levels is 
illustrated by the neutron-capture 
resonances. Their average spacing is about 106 
times smaller than the average single-particle 
level spacing, and their widths are also 106 
times smaller than expected for a single 
particle excitation. 

Introduction - compound nucleus
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Introduction (a simple derivation)
A simple result can be obtained within the independent-particle model. It starts with 
sets of single-particle levels for both neutrons and protons. The determination of 
the nuclear level density is essentially a combinatorial problem, i.e., determining 
how many ways these single-particle levels can be occupied to give the desired total 
excitation energy.

R. J. CHARITY AND L. G. SOBOTKA PHYSICAL REVIEW C 71 , 024310 (2005)

The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =

∣∣∣∣∣∣

∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣
, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)

024310-2

Entropy
fi =

1

[1 + exp(�✏i � ↵)]
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radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
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is discussed in Sec. VI, and calculated level densities are
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problem, i.e., determining how many ways these single-
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transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]
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, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
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by
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strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
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Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
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=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =

∣∣∣∣∣∣

∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣
, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =

∣∣∣∣∣∣

∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣
, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =

∣∣∣∣∣∣

∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣
, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)
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, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =

∣∣∣∣∣∣

∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣
, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =
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∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2
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, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)

024310-2

R. J. CHARITY AND L. G. SOBOTKA PHYSICAL REVIEW C 71 , 024310 (2005)

The decay width for protons or neutrons is roughly [6]

! = t2

πϵ0
exp(−Ecost/t), (1)

where ϵ0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α,β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α,β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑

i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑

i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =

∣∣∣∣∣∣

∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣
, (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) =
∑

i δ(ε − εi) is
constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗

, (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval *ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S =

√
a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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level-density parameter

A simple result can be obtained within the independent-particle model. It starts 
with sets of single-particle levels for both neutrons and protons. The 
determination of the nuclear level density is essentially a combinatorial 
problem, i.e., determining how many ways these single-particle levels can be 
occupied to give the desired total excitation energy.

Charity and Sobotka, PRC 71, 024310 (2005)

S = �E � ↵N + lnZ(↵,�)
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AUGUsT is, 1936 PH YS ICAL REVIEW VOLUM E 50

An Attempt to Calculate the Number of Energy Levels of a Heavy Nucleus
H. A. BETHE, Cornell University

(Received June 5, 1936)

Experiments on slow neutrons, and theoretical considera-
tions of Bohr have shown that heavy nuclei possess an
enormous number of energy levels which are very closely
spaced if the nucleus is highly excited. A crude method is
suggested for calculating the spacing between these
levels. The method is statistical: The individual nuclear
particles are supposed to move in a simple potential hole,
and the energy of the complete nucleus is supposed to be
the sum of the energies of the individual particles. A
critical discussion of these assumptions is given in section 5.
The problem then reduces itself to the calculation of the
"entropy" of a Fermi gas containing a given number of
particles A and having a given excitation energy Q above
the zero point energy of the Fermi gas (cf. section 2 and 3).
This calculation gives the total number of levels of the
complete nucleus in a given energy interval irrespective of
the angular momentum, which will, for most of the levels,
be very large. For the theory of neutron capture, it is
necessary to calculate the density of nuclear levels with a
given anf.ulur momentum I (section 4). The spacing of
nuclear levels is found to depend on the product of the

mass number A and the excitation energy Q of the nucleus,
and to be roughly given by

6=4.1 106x4e '/(2I+1) volts
x= (AQ) l/2. 20,

Q being expressed in MV and I being the nuclear spin. For
the capture of slow neutrons by nuclei of medium weight
(A around 100), 6 is of the order 50 to 500 volts. The spac-
ing between adjacent levels decreases rapidly with increas-
ing atomic weight. For given atomic weight, the spacing
of the nuclear levels responsible for neutron capture is
wider if the capture leads to the formation of a radioactive
nucleus than if a stable nucleus is formed. This explains
the experimental fact that only moderately large cross
sections are found for the capture of thermal neutrons
leading to radioactive nuclei while the very largest cross
sections are all connected with the formation of stable
nuclei. The dependence of the spacing on various factors is
discussed (section 6); the results seem to be in qualitative
agreement with experiment.

1. STATEMENT OF PROBLEM

OHR' has given strong reasons for the exist-
ence of a very great number of closely

spaced energy levels for a highly excited heavy
nucleus. Breit and Wigner' and Bohr' have shown
that the assumption of such levels leads auto-
matically to a completely satisfactory explana-
tion of all phenomena connected with slow
neutrons, in particular the selective absorption,
the high capture cross section and the large ratio
of capture to scattering. Various investigators'
have measured the position of the neutron reson-
ance levels for several substances. The reso-
nances are found to lie at neutron energies rang-
ing from about 0.1 volt (Cd) to about 50 volts
(I). These measurements indicate that the spac-
ing between adjacent energy levels of the nuclei
concerned in the energy region investigated is
very small, maybe of the order of 100 volts or
even less.

' Bohr, Nature 13'7 (1936).' Breit and Wigner, Phys. Rev. 49, 519 (1936).' Frisch and Placzek, Nature 137, 357 (1936); Weekes,
Livingston and Bethe, Phys. Rev. 49, 471 (1936); Rasetti,
Fink, Goldsmith and Mitchell, Phys. Rev. 49, 869 (1936);
Collie, Nature 13'7, 614 (1936);Fermi and Amaldi, Ricerca
scient. 1, No. 7—8 (1936).

It is the purpose of this paper to give some
fairly crude calculations leading to an estimate of
this spacing. We consider a nucleus containing N
neutrons and Z protons. The total number of
particles (mass number) will be denoted by
A =X+Z.The nucleus will have a certain ground
state of energy Uo. We are interested in the
energy levels of the nucleus which lie by a certain
amount Q higher than the ground state, and we
ask for the density of energy levels in this region,
i.e. , for the number of levels between Q and
Q+dQ which we may' call p(Q)dQ. 1/p(Q) will
then be the average spacing between neighboring
levels.
We shall be particularly interested in such

values of Q which are just sufficient to dissociate
the given nucleus A into a neutron and a residual
nucleus of atomic weight A —1. These energy
levels will be important for the capture of slow
neutrons by the nucleus A —1. In general, the
"dissociation energy" Q, i.e. , the energy set free
when a neutron is captured by the nucleus A —1,
will be of the order 8 MV. This figure applies if
the packing fractions of the nuclei A —1 and A
are about equal, and represents the excess of the
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The evaluation of partition functions in the grand-canonical and canonical ensembles and the
accuracy of the ensuing saddle-point approximations for the many-body energy level density are
investigated. A simple method for obtaining the canonical partition function and average energy
using the saddle-point approximation is also examined. Results are shown for the nucleus Er
within an independent-particle model, where a comparison with the exact level density of the model
is made.
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I. INTRODUCTION

In nuclear systems, one of the main interests in a sta-
tistical calculation is to obtain the many-body energy
level density, which, as is well known, is given by the in-
verse Laplace transform of the partition function. This is
usually done in the saddle-point approximation [1]. Par-
tition functions are then generally calculated in a grand
canonical (GC) ensemble, where traces of uncorrelated
density operators can easily be performed.
The GC ensemble leads however to nonvanishing Buc-

tuations in the particle number, which, although pos-
ing no inconvenience in systems with an infinite or very
large number of particles, may affect results in small fi.—

nite systems such as finite nuclei. Accordingly, canoni-
cal ensembles have been considered quite often recently,
both in nuclear systems (see, for instance, Refs. [2—8])
and atomic clusters [9], and even in solid state physics to
study finite size effects [10]. A canonical ensemble leads
to nonvanishing corrections to the GC thermal averages,
particularly for light nuclei. It has been also suggested
[11] that measurable differences may exist between the
level densities obtained in the saddle-point approxima-
tion in diferent ensembles. Moreover, for approximate
treatments which do not conserve particle number, as in
the case of the Bardeen-Cooper-Schrieffer (BCS) approx-
imation, both quantum and statistical Huctuations in the
particle number will occur in a GC ensemble, and special
number projected statistics have been developed for this
case [2,3]. Statistics in more general ensembles have been
discussed in [8].
In this work we shall make an explicit check of the en-

ergies and the level densities obtained both in the canon-
ical and GC ensembles for a heavy nucleus, within the
context of a finite space calculation which should be re-
liable for low temperatures. We shall also examine the
saddle-point approximation for the canonical partition
function, which provides a very simple method for obtain-
ing canonical averages. Results will be given for Er in
the Baranger and Kumar space [12], utilizing an uncor-
related model based on an independent particle Hamil-
tonian, where the exact level density (of the model) can
be obtained by counting of particle-hole excitations. We

shall consider the case where the Hamiltonian employed
conserves particle number, so that only statistical Huctu-
ations are involved.

II. ENERGY LEVEL DENSITY IN STATISTICAL
TREATMENTS

A. Grand-canonical ensemble

Let us consider erst a one-component system. The
partition function in the GC ensemble is

Z (P, n) = Trexp[ —PH+ nN],

Z (P, n) =) p(E, N)e ~ + dE, (2)

where Eo is the ground state energy. Hence,

p(E, N) = Z o(P+is, n+ iP)
—(n+i P)N+(P+i s)Edged

The saddle-point approximation to the above integral
leads to (we define r) = (P, n))

Z (P, n)eP~ —~
[(27r) 2Det (

s» &Gc )]1/2 (4)

where P and n are related to E and N by the equations

E = (H) = —c)lnZ /c)P,

where p = T, H is the Hamiltonian, N the particle
number operator, and n = Pp, with p the chemical po-
tential. The trace is taken over the complete unrestricted
Fock space of dimension 2, where L is the dimension of
the single particle space considered, and involves thus
states with particle numbers varying from 0 to L.
The energy level density p(E, N) is related to the GC

partition function by (we assume in what follows that H
conserves particle number)
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In nuclear systems, one of the main interests in a sta-
tistical calculation is to obtain the many-body energy
level density, which, as is well known, is given by the in-
verse Laplace transform of the partition function. This is
usually done in the saddle-point approximation [1]. Par-
tition functions are then generally calculated in a grand
canonical (GC) ensemble, where traces of uncorrelated
density operators can easily be performed.
The GC ensemble leads however to nonvanishing Buc-

tuations in the particle number, which, although pos-
ing no inconvenience in systems with an infinite or very
large number of particles, may affect results in small fi.—

nite systems such as finite nuclei. Accordingly, canoni-
cal ensembles have been considered quite often recently,
both in nuclear systems (see, for instance, Refs. [2—8])
and atomic clusters [9], and even in solid state physics to
study finite size effects [10]. A canonical ensemble leads
to nonvanishing corrections to the GC thermal averages,
particularly for light nuclei. It has been also suggested
[11] that measurable differences may exist between the
level densities obtained in the saddle-point approxima-
tion in diferent ensembles. Moreover, for approximate
treatments which do not conserve particle number, as in
the case of the Bardeen-Cooper-Schrieffer (BCS) approx-
imation, both quantum and statistical Huctuations in the
particle number will occur in a GC ensemble, and special
number projected statistics have been developed for this
case [2,3]. Statistics in more general ensembles have been
discussed in [8].
In this work we shall make an explicit check of the en-

ergies and the level densities obtained both in the canon-
ical and GC ensembles for a heavy nucleus, within the
context of a finite space calculation which should be re-
liable for low temperatures. We shall also examine the
saddle-point approximation for the canonical partition
function, which provides a very simple method for obtain-
ing canonical averages. Results will be given for Er in
the Baranger and Kumar space [12], utilizing an uncor-
related model based on an independent particle Hamil-
tonian, where the exact level density (of the model) can
be obtained by counting of particle-hole excitations. We

shall consider the case where the Hamiltonian employed
conserves particle number, so that only statistical Huctu-
ations are involved.

II. ENERGY LEVEL DENSITY IN STATISTICAL
TREATMENTS

A. Grand-canonical ensemble

Let us consider erst a one-component system. The
partition function in the GC ensemble is

Z (P, n) = Trexp[ —PH+ nN],

Z (P, n) =) p(E, N)e ~ + dE, (2)

where Eo is the ground state energy. Hence,

p(E, N) = Z o(P+is, n+ iP)
—(n+i P)N+(P+i s)Edged

The saddle-point approximation to the above integral
leads to (we define r) = (P, n))

Z (P, n)eP~ —~
[(27r) 2Det (

s» &Gc )]1/2 (4)

where P and n are related to E and N by the equations

E = (H) = —c)lnZ /c)P,

where p = T, H is the Hamiltonian, N the particle
number operator, and n = Pp, with p the chemical po-
tential. The trace is taken over the complete unrestricted
Fock space of dimension 2, where L is the dimension of
the single particle space considered, and involves thus
states with particle numbers varying from 0 to L.
The energy level density p(E, N) is related to the GC

partition function by (we assume in what follows that H
conserves particle number)
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Although the previous formula can be derived without recourse to statistical 
mechanics, Bethe realized there is a close analogy to the problem of a Fermi gas in 
contact with a heat bath of temperature T = 1/β and with chemical potential μ.       
Z is the grand partition function, S is the entropy, and thus 1/ T = dS/dE∗. 
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Introduction (a common approach)
The Fermi gas model in its various modifications is widely used for calculation of the 
nuclear level density. This model enables simple systematics to be established based 
on normalization of the energy dependence of the nuclear level density to data on 
the cumulative numbers of low-lying levels and the average spacings between S-
wave neutron resonances at the neutron binding energy (Bn) in the nucleus.  

However, the level density parameter a and excitation energy shift δeff, caused by 
even-odd differences in the nuclei, are considered free parameters. Since the δeff 
values obtained for odd-odd nuclei are negative, this approximation has been 
termed the back-shifted Fermi gas model.

⇢(U) =
1

12
p
2

1

�a1/4

exp
h
2
p
a(U � �eff )

i

(U � �eff )
5/4

<latexit sha1_base64="89BrNU6dPaXGfwBhR/iQiFfDLaA="></latexit><latexit sha1_base64="89BrNU6dPaXGfwBhR/iQiFfDLaA="></latexit><latexit sha1_base64="89BrNU6dPaXGfwBhR/iQiFfDLaA="></latexit><latexit sha1_base64="89BrNU6dPaXGfwBhR/iQiFfDLaA="></latexit>

total level density

a is the level density parameter 
associated with the density of single 
particle states near the Fermi energy;

the excitation energy shift δeff  is caused 
by even-odd differences in the nuclei
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Introduction (experimental sources)
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Neutron resonances

and others…

Inelastic scattering and nuclear 
reactions to resolved levels

In this type of experiment the nuclear energy levels are 
observed at an energy just exceeding the neutron 
binding energy, and the number of levels is obtained 
by counting the resonances in a particular neutron 
energy interval. It is necessary in such experiments that 
the width Γ of each level be less than the level spacing 
Δ and that the experimental resolution be good 
enough to resolve individual levels.
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The resolution obtained in these experiments is orders 
of magnitude poorer than that achieved with s-wave 
neutron spectroscopy. With such experiments, it is 
possible to study isolated levels up to an excitation 
energy of approximately 5 to 6 MeV for a nucleus with 
atomic mass around 60. Typical nuclear reactions are 
the (p, p’), (n, n’), (α, α’) and (p, α) reactions.
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Combinatorial method

Subtraction method

Frozen bound states

38 R. Pezer et al. / Nuclear Physics A 717 (2003) 21–43

Table 3
Fits of the BBF (27) and GBF (28) parameters to the calculated total state densities

Nuclei BBF GBF
a [MeV−1] E0 [MeV] χ2 a [MeV−1] E0 [MeV] ξ χ2

208Pb 13.000 6.000 0.14 4.717 2.466 0.6354 0.015
114Sn 12.16 −0.384 0.044 28.064 2.643 0.4226 0.01
60Ni 6.346 −0.228 0.08 4.634 −1.719 0.5410 0.08

Fig. 5. Total level density (TLD) of 114Sn as function of the excitation energy, calculated with (solid line) and
without the vibrational enhancement factor (squares), and compared with experimental data from Ref. [44].
Lower right inset: the same results magnified with all available experimental points present. In the upper inset
the calculated cumulative numbers of discrete levels (CNL) (solid line) are shown in comparison with the
experimental values [43].

up to 50 MeV, while BBF exhibits sizable discrepancies outside the region of fit. The BBF
curve appears to be in better agreement with the total state density of Ref. [31], probably in
connectionwith the fact that the latter does not include an explicit vibrational enhancement.
For lighter spherical nuclei, there are experimental data on total level densities mainly

below 20MeV, where the vibrational enhancement factor discussed in Section 4 is expected
to play a significant role. This is indeed the case for the semi-magic nuclei 114Sn and 60Ni,
whose calculated level densities are compared with experimental data in Figs. 5 and 6,
respectively. Here, α is adjusted again on the binding energy and the cumulative number
of discrete levels, while the level density at higher energy is reproduced by means of the
smooth vibrational factor discussed in the previous section.

Relativistic  
mean field

input

inputinput

Pezer, Ventura and Vretenar, NPA 717 (2003) 21-43
ρ

Our project
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Relativistic mean field (I)

sections, the single particle levels, shell structure, the restoration of the pseudo-spin symmetry, the halo and
giant halo, and halos in hyper nuclei, etc. In Section 5, the predictions of new magic numbers in superheavy
nuclei are presented. Finally a brief summary and perspectives are given in Section 6.

2 Relativistic mean field theory

In this section, we present the formalism, the numerical solutions and the effective interactions for the RMF
theory as well as its application for nuclear matter. In the first subsection, the effective Lagrangian density and
equations of motion for the nucleon and the mesons are given. The numerical solutions of the Dirac equation
for finite nuclei are discussed in the second subsection. Subsequently, the effective interactions with nonlinear
self-coupling meson fields and density dependent meson-nucleon couplings, and their influences on properties
of nuclear matter are discussed.

2.1 The general formalism

The RMF theory describes the nucleus as a system of Dirac nucleons which interact in a relativistic covariant
manner via meson fields. The meson fields are treated as classical fields. In the simplest RMF version, i.e.,
the σ-ω model [18], the mesons do not interact among themselves, which leads to too large incompressibility
in nuclear matter. Therefore a nonlinear self-coupling of the σ-field was proposed [49]. In order to repro-
duce the density dependence of the vector and scalar potentials of the Dirac-Brueckner calculations [26], the
nonlinear self-coupling of the ω-meson was found to be necessary [50]. Recently the nonlinear self-coupling of
the isovector ρ-meson was also introduced to improve the density-dependence of the isospin-dependent part of
the potentials [51]. Within the present scheme, the isoscalar-scalar σ-meson provides the mid- and long-range
attractive part of the nuclear interaction whereas the short-range repulsive part is provided by the isoscalar-
vector ω-meson. The photon field Aµ(x) accounts for the Coulomb interaction while the isospin dependence
of the nuclear force is described by the isovector-vector ρ-meson. The π-meson field is not included because it
does not contribute at the Hartree level. In principle, other mesons apart from σ, ω, and ρ may also contribute
to the nuclear interaction as well, e.g., the isovector scalar δ-meson, which was suggested in Ref. [52] and also
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theory therefore it is expected that the contributions from other mesons can be effectively taken into account
by adjusting the model parameters to the properties of nuclear matter and finite nuclei. With various versions
of the nonlinear self-couplings of meson fields, the RMF theory has been used to describe lots of nuclear phe-
nomena during the past years with great successes [19–21]. In order to avoid the problem of instability for
the nonlinear interactions at high densities, the RMF theories with density dependence in the couplings are
developed as well [26, 51,59–62].

The Lagrangian density of the RMF theory can be written as

L = ψ̄

[

iγµ∂µ −M − gσσ − gωγ
µωµ − gργ

µτ⃗ · ρ⃗µ − eγµAµ
1− τ3

2

]

ψ

+
1

2
∂µσ∂µσ − Uσ(σ)−

1

4
ΩµνΩµν + Uω(ωµ)−

1

4
R⃗µν · R⃗µν + Uρ(ρ⃗µ)

−
1

4
FµνFµν ,

(1)

where M and mi(gi) (i = σ,ω, ρ) in the following are the masses (coupling constants) of the nucleon and the
mesons respectively and

Ωµν = ∂µων − ∂νωµ, (2a)

R⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ, (2b)

Fµν = ∂µAν − ∂νAµ (2c)

are the field tensors of the vector mesons and the electromagnetic field. We adopt the arrows to indicate vectors
in isospin space and bold types for the space vectors. Greek indices µ and ν run over 0, 1, 2, 3 or t, x, y, z,
while Roman indices i, j, etc. denote the spatial components.
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The nonlinear self-coupling terms Uσ(σ), Uω(ωµ), and Uρ(ρ⃗µ) for the σ-meson, ω-meson, and ρ-meson in
the Lagrangian density (1) respectively have the following forms:

Uσ(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4, (3a)

Uω(ωµ) =
1

2
m2

ωω
µωµ +

1

4
c3 (ω

µωµ)
2 , (3b)

Uρ(ρ⃗µ) =
1

2
m2

ρρ⃗
µ · ρ⃗µ +

1

4
d3 [ρ⃗

µ · ρ⃗µ]2 . (3c)

From the Lagrangian density (1), the Hamiltonian operator can be obtained by the general Legendre
transformation

H =

∫

d3x H =

∫

d3x

[

∑

i

πi(x)
∂φi(x)

∂t
− L(x)

]

, (4)

where the conjugate momenta of the field operators φi (φi = ψ,σ,ων , ρ⃗ν , Aν) are defined as

πi(x) =
∂L

∂ [∂φi/∂t]
. (5)

Then the Hamiltonian density of the system can be easily obtained as

H =H[ψ] +H[σ] +H[ων ] +H[ρ⃗ν ] +H[Aν ]

=ψ̄
[

−iγi∂i +M
]

ψ + gσσψ̄ψ + gωωµψ̄γ
µψ + gρρ⃗µ · ψ̄γµτ⃗ψ + eAµψ̄γ

µ1− τ3
2

ψ

+
1

2
∂0σ∂0σ −

1

2
∂iσ∂iσ + Uσ(σ)−

1

4
Ω0νΩ0ν +

1

4
ΩiνΩiν − Uω(ων)

−
1

4
R⃗0ν · R⃗0ν +

1

4
R⃗iν · R⃗iν − Uρ(ρ⃗ν)−

1

4
F 0νF0ν +

1

4
F iνFiν .

(6)

The relativistic mean field theory is formulated on the basis of the effective Lagrangian (1) with the mean
field approximation, i.e. the meson fields are treated as classical c-numbers. With this approximation, all the
quantum fluctuations of the meson fields are removed and the nucleons are described as independent particles
moving in the effective meson and photon fields. Therefore the nucleon field operator can be expanded on a
complete set of single-particle states as,

ψ(x) =
∑

a

ψa(x)ca, (7)

where ca is the annihilation operator for a nucleon in the state a of the Dirac fields and ψa is the corresponding
single-particle spinor. The operator ca and its conjugate c†a satisfy the anticommutation rules

{ca, c†b} = δab and {ca, cb} = {c†a, c
†
b} = 0. (8)

Confined to the single-particle states i with positive energies, i.e. the no-sea approximation, the ground state
of the nucleus can be constructed as,

|Φ⟩ =
A
∏

i=1

c†i |0⟩ with ⟨Φ|Φ⟩ = 1, (9)

where |0⟩ is physical vacuum.
With the ground state (9) and the mean field approximation, the energy functional, i.e. the expectation

value for the Hamiltonian (6) is obtained as

ERMF(ρ,φ) =⟨Φ|H|Φ⟩

=

∫

d3xTr

[

β

(

γ · p+M + gσσ + gωω
µγµ + gρτ⃗ · ρ⃗µγµ +

1

2
e(1− τ3)Aµγ

µ

)

ρ

]

+

∫

d3x

{

−
1

2
∂µσ∂µσ + Uσ(σ) +

1

4
ΩµνΩµν − Uω(ων) +

1

4
R⃗µν · R⃗µν − Uρ(ρ⃗ν) +

1

4
FµνFµν

}

,

(10)

5

where φ = σ,ων , ρ⃗ν , Aν and the density matrix ρ is defined as

ρij ≡ ⟨Φ|ψ†
jc

†
jψici|Φ⟩ = ψ†

jψiδij . (11)

For system with time reversal symmetry, the space-like components of the vector fields vanish. Furthermore
one can assume that in all nuclear applications the nucleon single-particle states do not mix isospin, i.e. the
single-particle states are eigenstates of τ3, therefore only the third component of ρ⃗ν survives. Stationarity
implies that the nucleon single-particle wave function can be written as

ψi(x) = e−iϵitψi(x). (12)

where ϵi is the single-particle energy. Accordingly the density matrix is reduced as,

ρij = ψ†
j(x

′)ψi(x)δij . (13)

Altogether there remain only the meson fields σ, ω0, ρ30, A0 which are time independent.
The equations of motion for the nucleon and the mesons can be obtained by requiring that the energy

functional (10) be stationary with respect to the variations of ρ and φ. More explicitly, the stationary condition
reads

δ (ERMF(ρ,φ)− Tr(Eρ)) = 0, (14)

where E is a diagonal matrix, whose diagonal elements are the single particle energies ϵi(i = 1, · · · , N) intro-
duced in Eq.(12), and N is the number of eigenstates.

Using the variation δρ with respect to ψi, the stationary condition (14) leads to the Dirac equation

(α · p+ β(M + S) + V )ψi(x) = ϵiψi(x) (15)

for the nucleon and the Klein-Gordon equations for sigma, omega, rho, and the photon:

−∇
2σ + U ′

σ(σ) = −gσρs, (16a)

−∇
2ω0 + U ′

ω(ω0) = gωρv, (16b)

−∇
2ρ30 + U ′

ρ(ρ
3
0) = gρρ3, (16c)

−∇
2A0 = eρc. (16d)

The scalar potential S and vector potential V in equation (15) are respectively:

S(x) = gσσ(x), (17a)

V (x) = gωω0(x) + gρτ3ρ
3
0(x) +

1

2
e(1 − τ3)A0(x). (17b)

While the scalar density (ρs), the baryon density (ρv), the isovector density (ρ3), and the charge density (ρc)
in the Klein-Gordon equations (16a–16d) are respectively,

ρs = Tr [βρ] , (18a)

ρv = Tr [ρ] , (18b)

ρ3 = Tr [τ3ρ] , (18c)

ρc =
1

2
Tr [(1− τ3)ρ] . (18d)

The total energy of the system can be obtained from the energy functional (10) as,

E =

∫

d3x

{

Tr [(α · p+ βM) ρ] +
1

2
Tr

[

gσβσρ+ gωω0ρ+ gρτ3ρ
3
0ρ+

1

2
e(1− τ3)A0ρ

]}

+

∫

d3x
[

Uσ(σ)− Uω(ω0)− Uρ(ρ
3
0)
]

−
1

2

∫

d3x
[

σU ′
σ(σ) − ω0U ′

ω(ω0)− ρ30U
′
ρ(ρ

3
0)
]

.

(19)

In the density dependent RMF approach, where the nonlinear self-couplings for the σ, ω, and ρmesons in the
Lagrangian density are respectively replaced by the density dependence of the coupling constants gσ(ρ), gω(ρ),
and gρ(ρ), an additional term, i.e. the rearrangement term, will appear in the Dirac equation (15) [26,51,59–62].

6

Lagrangian density

Meson fields

non linear terms

meson field

sigma and omega fields 
 have opposite signs

Finelli et al., PRC 66, 024306 (2002) 
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Relativistic mean field (II)

The nonlinear self-coupling terms Uσ(σ), Uω(ωµ), and Uρ(ρ⃗µ) for the σ-meson, ω-meson, and ρ-meson in
the Lagrangian density (1) respectively have the following forms:
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σσ
2 +

1

3
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4
g3σ
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ωω
µωµ +
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4
c3 (ω

µωµ)
2 , (3b)

Uρ(ρ⃗µ) =
1
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m2

ρρ⃗
µ · ρ⃗µ +

1

4
d3 [ρ⃗

µ · ρ⃗µ]2 . (3c)

From the Lagrangian density (1), the Hamiltonian operator can be obtained by the general Legendre
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H =
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d3x H =

∫
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[

∑

i

πi(x)
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∂t
− L(x)

]

, (4)

where the conjugate momenta of the field operators φi (φi = ψ,σ,ων , ρ⃗ν , Aν) are defined as
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=ψ̄
[

−iγi∂i +M
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The relativistic mean field theory is formulated on the basis of the effective Lagrangian (1) with the mean
field approximation, i.e. the meson fields are treated as classical c-numbers. With this approximation, all the
quantum fluctuations of the meson fields are removed and the nucleons are described as independent particles
moving in the effective meson and photon fields. Therefore the nucleon field operator can be expanded on a
complete set of single-particle states as,

ψ(x) =
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ψa(x)ca, (7)

where ca is the annihilation operator for a nucleon in the state a of the Dirac fields and ψa is the corresponding
single-particle spinor. The operator ca and its conjugate c†a satisfy the anticommutation rules

{ca, c†b} = δab and {ca, cb} = {c†a, c
†
b} = 0. (8)

Confined to the single-particle states i with positive energies, i.e. the no-sea approximation, the ground state
of the nucleus can be constructed as,

|Φ⟩ =
A
∏

i=1

c†i |0⟩ with ⟨Φ|Φ⟩ = 1, (9)

where |0⟩ is physical vacuum.
With the ground state (9) and the mean field approximation, the energy functional, i.e. the expectation

value for the Hamiltonian (6) is obtained as

ERMF(ρ,φ) =⟨Φ|H|Φ⟩

=

∫
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(
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µγµ + gρτ⃗ · ρ⃗µγµ +
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2
e(1− τ3)Aµγ

µ
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ρ
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d3x
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∂µσ∂µσ + Uσ(σ) +
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4
ΩµνΩµν − Uω(ων) +
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The relativistic mean field theory is formulated on the basis of the effective Lagrangian (1) with the mean
field approximation, i.e. the meson fields are treated as classical c-numbers. With this approximation, all the
quantum fluctuations of the meson fields are removed and the nucleons are described as independent particles
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value for the Hamiltonian (6) is obtained as
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∂µσ∂µσ + Uσ(σ) +

1

4
ΩµνΩµν − Uω(ων) +

1

4
R⃗µν · R⃗µν − Uρ(ρ⃗ν) +

1

4
FµνFµν

}

,

(10)

5

The nonlinear self-coupling terms Uσ(σ), Uω(ωµ), and Uρ(ρ⃗µ) for the σ-meson, ω-meson, and ρ-meson in
the Lagrangian density (1) respectively have the following forms:

Uσ(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4, (3a)

Uω(ωµ) =
1

2
m2

ωω
µωµ +

1

4
c3 (ω

µωµ)
2 , (3b)

Uρ(ρ⃗µ) =
1

2
m2

ρρ⃗
µ · ρ⃗µ +

1

4
d3 [ρ⃗

µ · ρ⃗µ]2 . (3c)

From the Lagrangian density (1), the Hamiltonian operator can be obtained by the general Legendre
transformation

H =

∫

d3x H =

∫

d3x

[

∑

i

πi(x)
∂φi(x)

∂t
− L(x)

]

, (4)

where the conjugate momenta of the field operators φi (φi = ψ,σ,ων , ρ⃗ν , Aν) are defined as

πi(x) =
∂L

∂ [∂φi/∂t]
. (5)

Then the Hamiltonian density of the system can be easily obtained as

H =H[ψ] +H[σ] +H[ων ] +H[ρ⃗ν ] +H[Aν ]

=ψ̄
[

−iγi∂i +M
]

ψ + gσσψ̄ψ + gωωµψ̄γ
µψ + gρρ⃗µ · ψ̄γµτ⃗ψ + eAµψ̄γ

µ1− τ3
2

ψ

+
1

2
∂0σ∂0σ −

1

2
∂iσ∂iσ + Uσ(σ)−

1

4
Ω0νΩ0ν +

1

4
ΩiνΩiν − Uω(ων)

−
1

4
R⃗0ν · R⃗0ν +

1

4
R⃗iν · R⃗iν − Uρ(ρ⃗ν)−

1

4
F 0νF0ν +

1

4
F iνFiν .

(6)

The relativistic mean field theory is formulated on the basis of the effective Lagrangian (1) with the mean
field approximation, i.e. the meson fields are treated as classical c-numbers. With this approximation, all the
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5

Mean field

2.2 Numerical algorithm for spherical nuclei

The harmonic oscillator basis has served as a very useful tool in nuclear structure study. Normally, the equations
of motion for nucleons moving in a mean field are solved by expanding them on the harmonic oscillator (HO)
basis [15–17,35,63]. However, for exotic nuclei with large spacial extension, e.g., halo nuclei, it is not justified
to work in the conventional harmonic oscillator basis due to its localization [36,64–66]. Instead, one can choose
to work either in the coordinate space, or improve the asymptotic behavior of the HO wave function, or adopt
other basises which have a correct asymptotic behavior, for example, the Woods-Saxon basis.

In this subsection, we will focus on the numerical solution of the RMF for spherical nuclei. Due to the
special spacial symmetry, both the Dirac equation for the nucleon and the Klein-Gordon equations for the
mesons and the photon become radially dependent only, thus facilitating much the solution of the coupled
equations. The formalism for the spherical relativistic Hartree (SRH) theory will be briefly presented. We
then review the SRH theory in different basis, including Finite Element Method (FEM) in coordinate space,
transformed harmonic oscillator basis, and the Woods-Saxon basis. The application of the SRH theory to
doubly magic nuclei follows.

2.2.1 Spherical relativistic Hartree theory

Starting from the Eqs. (15) and (16a–16d) given in the previous subsection, one derives the coupled radial
equations for spherical nuclei, i.e., the radial Dirac equation and radial Klein-Gordon equations.

For spherical nuclei, the Dirac spinor which is the expansion coefficient ψa(r) (a = {α,κ,m}) in Eq. (12)
(the coordinate from x has been changed to r to reflect the spherical symmetry) is characterized by the angular
momentum quantum numbers κ(l,j), m, the parity, the isospin t = ±1/2 (“+” for neutrons and “−” for
protons) and the radial quantum number α and has the form

ψακm(r, t) =

⎛

⎜

⎜

⎝

i
Gκ

α(r)

r

F κ
α (r)

r
σ · r̂

⎞

⎟

⎟

⎠

Y l
jm(θ,φ)χtα(t), (20)

with Gκ
α(r)/r and F κ

α (r)/r the radial wave functions for the upper and lower components and Y l
jm(θ,φ) the

spinor spherical harmonics [67]. Substituting Eq. (20) into the Dirac equation (15), one can deduce the radial
Dirac equations as

ϵαG
κ
α =

(

−
d

dr
+
κ

r

)

F κ
α + (M + S(r) + V (r))Gκ

α, (21a)

ϵαF
κ
α =

(

+
d

dr
+
κ

r

)

Gκ
α − (M + S(r)− V (r))F κ

α , (21b)

with the scalar and vector potentials

S(r) = gσσ, (22a)

V (r) = gωω0 + gρτ3ρ
3
0 +

1

2
e(1 − τ3)A0. (22b)

The meson field equations (16a–16d) simply become radial Laplace equations of the form
(

−
d2

dr2
−

2

r

d

dr
+m2

φ

)

φ(r) = sφ(r). (23)

where mφ are the meson masses for φ = σ,ω, ρ and zero for the photon. The source terms are
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2.2 Numerical algorithm for spherical nuclei

The harmonic oscillator basis has served as a very useful tool in nuclear structure study. Normally, the equations
of motion for nucleons moving in a mean field are solved by expanding them on the harmonic oscillator (HO)
basis [15–17,35,63]. However, for exotic nuclei with large spacial extension, e.g., halo nuclei, it is not justified
to work in the conventional harmonic oscillator basis due to its localization [36,64–66]. Instead, one can choose
to work either in the coordinate space, or improve the asymptotic behavior of the HO wave function, or adopt
other basises which have a correct asymptotic behavior, for example, the Woods-Saxon basis.

In this subsection, we will focus on the numerical solution of the RMF for spherical nuclei. Due to the
special spacial symmetry, both the Dirac equation for the nucleon and the Klein-Gordon equations for the
mesons and the photon become radially dependent only, thus facilitating much the solution of the coupled
equations. The formalism for the spherical relativistic Hartree (SRH) theory will be briefly presented. We
then review the SRH theory in different basis, including Finite Element Method (FEM) in coordinate space,
transformed harmonic oscillator basis, and the Woods-Saxon basis. The application of the SRH theory to
doubly magic nuclei follows.

2.2.1 Spherical relativistic Hartree theory

Starting from the Eqs. (15) and (16a–16d) given in the previous subsection, one derives the coupled radial
equations for spherical nuclei, i.e., the radial Dirac equation and radial Klein-Gordon equations.

For spherical nuclei, the Dirac spinor which is the expansion coefficient ψa(r) (a = {α,κ,m}) in Eq. (12)
(the coordinate from x has been changed to r to reflect the spherical symmetry) is characterized by the angular
momentum quantum numbers κ(l,j), m, the parity, the isospin t = ±1/2 (“+” for neutrons and “−” for
protons) and the radial quantum number α and has the form
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⎜
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F κ
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⎟

⎠
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with Gκ
α(r)/r and F κ

α (r)/r the radial wave functions for the upper and lower components and Y l
jm(θ,φ) the

spinor spherical harmonics [67]. Substituting Eq. (20) into the Dirac equation (15), one can deduce the radial
Dirac equations as
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With the microscopic center-of-mass motion, a multi-parameter fitting can be performed using the Levenberg-
Marquardt method [88]. In Ref. [51], the masses of 16O, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 116Sn, 132Sn, 194Pb and
208Pb and the bulk quantities of nuclear matter are chosen as observables to determine the effective interactions.
The radii are excluded because the proper values of the compression modulus K and the baryonic saturation
density ρ0 are sufficient to give a good description of the radii. For a fixed value of the compression modulus
K, a large baryonic saturation density ρ0 will give a small charge radius and vice versa. Therefore a proper
description of both masses and radii of finite nuclei could be obtained by carefully adjusting the values of these
two quantities K and ρ0. To give a fairly precise description of the masses, the center-of-mass correction is also
essential for both light and heavy nuclei. As it can be seen in Fig. 3, the deviation between the microscopic
and phenomenological results is considerably large not only for the light nuclei but also for the heavy ones.
And there exist very remarkable shell effects in the microscopic results which are impossible to obtain with the
phenomenological methods. The microscopic center-of-mass correction [87], therefore, is chosen to deal with
the center-of-mass motion.

Because the contribution to the nuclear masses from the nonlinear ρ-meson term is found to be fairly
small, the effective interaction PK1R is obtained by fixing the nonlinear self-coupling constant d3 to 350.0 and
adjusting other parameters.

In the RMF theory with density-dependent meson-nucleon couplings, the density-dependence of the coupling
constants gσ and gω can be parameterized as,

gi(ρv) = gi(ρsat)fi(x) for i = σ,ω, (53)

where

fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2
(54)

is a function of x = ρv/ρsat, and ρsat denotes the baryonic saturation density of nuclear matter. For the ρ
meson, an exponential dependence is utilized as

gρ = gρ(ρsat) exp[−aρ(x− 1)]. (55)

For the functions fi(x), one has five constraint conditions fi(1) = 1, f ′′
σ (1) = f ′′

ω(1) and f ′′
i (0) = 0. Then

8 parameters related to density dependence for σ-N and ω-N couplings are reduced to 3 free parameters. In
general, the masses of the nucleons and the ρ-meson are fixed and the nonlinear self-coupling constants g2, g3, c3
and d3 are set to zero. With 4 free parameters for density dependence, totally there are 8∼9 parameters left
free in the Lagrangian density (1) for the density-dependent meson-nucleon coupling RMF theory. A density-
dependent meson-nucleon coupling effective interaction PKDD has also been obtained in Ref. [51] (see Tables 2
and 3).

Tables 2 and 3 tabulate the new effective interactions PK1, PK1R and PKDD [51] in comparison with the
old ones TM1 [50], NL3 [80], TW99 [61] and DD-ME1 [62]. The newly obtained ones reproduce better the
experimental masses [89]. PK1, PK1R and PKDD also describe the charge radii very well, especially for those of
the Pb isotopes. More comprehensive comparisons between Hartree-Fock-Bogoliubov, extended Thomas-Fermi
model with Strutinski integral, RMF, and macroscopic-microscopic approaches with different forces have been
performed for the description of nuclear masses and charge radii of spherical even-even nuclei (116 nuclides),
from light (A=16) to heavy (A=220) ones in Ref. [90].

Table 4 lists the nuclear matter quantities calculated with the newly obtained effective interactions PK1,
PK1R and PKDD, in comparison with those from the other interactions. All the new effective interactions
give a proper value for the compression modulus K.

2.4 Density and isospin dependence of effective interactions

There are so far quite a number of effective interactions, PK1, PK1R, PKDD [51] together with NL1, NL2 [91],
NL3 [80], NLSH [79], TM1, TM2 [50], GL-97 [92] and the density-dependent effective interactions TW-99 [61],
DD-ME1 [62], etc.. It is very interesting to investigate the density and isospin dependence of the interaction
strengthes of various effective interactions in the RMF theory and study their effects on nuclear matter [93].
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FIG. 1: Density dependence of the couplings of the σ-, ω-, and ρ-meson. The result of the

present analysis (DD-ME1) is shown in comparison with the parameters of the effective interaction

TW-99 [30].
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TABLE III: Binding energies, charge radii and differences between neutron and proton radii used

to adjust the parameters of the DD-ME1 interaction. The calculated values are compared with

experimental data (in parentheses).

E/A (MeV) rch (fm) rn − rp (fm)

16O -7.974 (-7.976) 2.730 (2.730) -0.03

40Ca -8.576 (-8.551) 3.464 (3.485) -0.05

48Ca -8.631 (-8.667) 3.482 (3.484) 0.19

90Zr -8.704 (-8.710) 4.294 (4.272) 0.06

112Sn -8.501 (-8.514) 4.586 (4.596) 0.11

116Sn -8.516 (-8.523) 4.616 (4.626) 0.15 (0.12)

124Sn -8.462 (-8.467) 4.671 (4.674) 0.25 (0.19)

132Sn -8.352 (-8.355) 4.720 0.27

204Pb -7.885 (-7.880) 5.500 (5.486) 0.18

208Pb -7.884 (-7.868) 5.518 (5.505) 0.20 (0.20)

214Pb -7.764 (-7.772) 5.568 (5.562) 0.27

210Po -7.857 (-7.834) 5.553 0.18
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Relativistic mean field (III)
Density-dependent extension
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starts becoming relevant with increasing temperature, is ig-
nored in the present work. Bonche et al. !12" incorporated
this contribution in an approximate manner. In the correct
description this contribution should be taken into account
accurately. However, this problem still awaits a satisfactory
solution. Therefore, in the present context our results are
reliable for temperatures T up to say 3 MeV, above which
uncertainties may start creeping in. Therefore, to be on the
conservative side, we present and discuss the rest of our
results #i.e., for deformed systems$ only for temperatures T
%3 MeV.

IV. RESULTS AND DISCUSSION

First we analyze our self-consistent RMF-T results for the
nucleus 208Pb, celebrated representative of spherical nuclei,
arranged in Table I. Similar results for a hypothetical super-
heavy spherical nucleus 298GG (Z!114) are also arranged
in the same table. The corresponding experimental values for
the ground state (T!0), where available, are shown #in pa-
rentheses$. The ground state properties are well reproduced
as was found earlier. With the increase in temperature T the
higher lying levels start getting partially occupied, resulting
in the decrease in binding energy and slight increase in radii.
The increase in radii as T increases, is very slow in the be-
ginning and later becomes relatively fast. These features are
as expected and are consistent with those found in the cor-
responding nonrelativistic #DDHF-T$ calculations !4" with
Skyrme-type interaction. The single particle level energies
(& i) vary only slightly with temperature. In general the low-
est levels very slightly increase with temperature whereas the
high-lying levels decrease. The maximum variation is '1.5

MeV for temperatures between T!0"5 MeV. This obser-
vation holds true both for proton and neutron levels. To un-
derstand this remarkable constancy of & i we examine the
variation of the calculated effective mass, local potentials
and the density distributions. This is because these quantities
are interlinked in this self-consistent mean field approach.
These are shown in Figs. 1–4, respectively. The calculated
proton local potential #Fig. 1$ oscillates in the interior. The
magnitude of oscillation decrease with the increase in tem-
perature. This oscillatory behavior is purely a manifestation
of coulomb effect and is therefore absent in the neutron po-
tential #Fig. 1$. The potential increases #less attractive$ and
vanish at the surface but at a slightly larger radius as the
temperature rises, both for neutrons and protons. This feature

TABLE I. The calculated self-consistent RMF-T total binding
energy E, point neutron radius rn , charge radius rc , the root mean
square radius r rms , and the entropy S for the various values of the
temperature T obtained by using the Lagrangian parameter set NL3.
The experimental ground state (T!0) values are give in the paren-
thesis.

208Pb
T E rn rc r rms S

0.0 1639.5 5.74 5.52 5.63
#1636.5$ #5.50$

1.0 1626.6 5.75 5.54 5.65 17.70
2.0 1567.7 5.83 5.57 5.70 57.01
3.0 1469.2 5.98 5.61 5.82 96.35
3.5 1401.8 6.09 5.65 5.90 117.07
4.0 1320.4 6.22 5.72 6.00 138.75

298GG(Z!114)

0.0 2123.9 6.51 6.26 6.39
1.0 2100.6 6.52 6.29 6.41 40.95
2.0 2026.1 6.58 6.31 6.46 90.40
3.0 1888.2 6.73 6.35 6.57 145.29
3.5 1789.4 6.84 6.39 6.65 175.64
4.0 1667.6 6.96 6.45 6.75 208.04

FIG. 1. The calculated RMF-T effective potential as a function
of the radial distance r for protons and neutrons for the spherical
nucleus 208Pb at temperatures T!0, 1.5, and 3.0 MeV.

FIG. 2. The calculated RMF-T ratio (M*/M ) of the effective
mass to the bare mass as a function of the radial distance r for the
spherical nucleus 208Pb at temperatures T!0, 1.5, and 3.0 MeV.
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The temperature dependent equations are derived by the minimization of 
the thermodynamical potential Ω,  

where E being the energy, T is the thermodynamic temperature which is 
introduced through the statistical Fermi occupation probabilities ni
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Temperature dependent relativistic mean field for highly excited hot nuclei
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The temperature dependent relativistic mean field !RMF-T" results obtained by using nonlinear Lagrangian
parameter set NL3 are presented for a few selected representative spherical and deformed nuclei. The calcu-
lated total binding energy !entropy" decrease !increase" as temperature (T) increases. The depths of the
potentials and the single particle !sp" energies change very little with temperature. The density slightly spreads
out; as a result the radius increases as temperature rises. For well deformed nuclei the shell effects disappear
at around T#3 MeV. This value of T is relatively higher as compared to the corresponding value of T
(#1.8 MeV" obtained in the Strutinsky-type calculations. This difference in the value of T is shown to be due
to the use of the effective nucleon mass (! the bare mass" appearing in the Skyrme III interaction or emerging
from the RMF Lagrangian.

PACS number!s": 21.10.Ft, 21.60.Jz, 21.90."f

I. INTRODUCTION

The study of hot or highly excited nuclei is of prime im-
portance both experimentally and theoretically. The experi-
mental study is based upon the fission type or heavy ion
reactions. The theoretical studies usually assume thermody-
namical equilibrium and introduce the partition function and
then calculate the relevant quantities like level density, en-
tropy, excitation energy, etc. Such past theoretical investiga-
tions $1% used the statistical model employing the spectra of
independent particles moving in an average deformed
nuclear potential—thereby calculating the energy surface
within the Strutinsky $2% method as a function of deforma-
tion for various excitations. This approach is not self-
consistent in the sense that the deformation is not calculated
self-consistently at each temperature/excitation. Therefore,
the temperature dependent mean field approach such as tem-
perature dependent Hartree-Fock method with density de-
pendent interaction of Skyrme type $3% !DDHF-T" is then
more appropriate. Such a self-consistent DDHF-T calcula-
tion also yields $4% the average potential, single particle
states and their occupation probabilities, etc., at each tem-
perature. This then enables us to calculate important quanti-
ties like excitation energy, entropy, level density parameter,
etc. and also to answer the question at what temperature the
deformation and/ shell effects disappear. The results of the
DDHF-T calculations with the Skyrme-III interaction using a
finite basis !oscillator" expansion method reveal $4% that the
deformation and the shell effects disappear with increasing
excitations, e.g., at around T#3 MeV for 168Yb, where the
minima of the free energy occurs at zero quadrupole
moment/deformation. On the other hand the Strutinsky-type
calculation yields zero deformation in general at lower tem-
peratures, e.g., T#1.8 MeV for 168Yb. We show here that
this difference in the value of temperature T perhaps is due to
the value of the effective mass ! the free nucleon mass
appearing in the Skyrme-III interaction.
The relativistic mean field !RMF" $5,6% has been shown to

be very successful for the description of a variety of nuclear

properties even for those where the conventional non-
relativistic DDHF description was deficient $6%. Therefore, it
is worthwhile to extend RMF to include temperature result-
ing in the temperature dependent RMF !RMF-T", the relativ-
istic counterpart of DDHF-T, and to carry out explicit nu-
merical calculations. Here, we present and discuss some of
our temperature dependent relativistic mean field !RMF-T"
results for a few selected representative spherical $208Pb,
298GG (Z#114)] and deformed (168Er, 168Yb, 150Sm) nu-
clei, with the following objectives: To demonstrate the fea-
sibility of carrying out such calculations in practice; to bring
out the salient general features; and to compare these with
the corresponding temperature dependent Hartree Fock
!DDHF-T" results obtained with the density dependent inter-
action of the Skyrme type.
The essential RMF-T equations are presented in Sec. II.

Section III contains the details of the calculation. The results
are presented and analyzed in Sec. IV. The last section con-
tains the summary and the conclusion.

II. FORMULATION

The conventional temperature dependent Hartree-Fock
!HF-T" equations derived by the minimization of the thermo-
dynamical potential have been presented and discussed at
various places $4,5%. These HF-T equations retain the same
form as that of the Hartree-Fock !HF" $7,8%/RMF equations
$6% for the static case. Therefore, here we list the RMF-T
equations and introduce the relevant quantities of interest
without going into the details. In this mean field variational
approach the temperature dependent equations are derived by
the minimization of the thermodynamical potential &:

&#E$TS$'N . !1"

Here E being the energy, T is the thermodynamic tempera-
ture which is introduced through the statistical Fermi occu-
pation probabilities ni :
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ni!!1" exp" ! i#"

kT # $#1

, #2$

for a single particle #sp$ orbit %i%having energy ! i , " de-
notes the chemical potential, k the Boltzmann constant and N
the particle number. The entropy S is obtained through

S!#&
i

'ni ln ni"#1#ni$ln#1#ni$(. #3$

The minimization of ) yields the temperature dependent
mean field equations:

h* i!! i* i , #4$

along with the constraint

&
i
ni!N . #5$

Here h denotes the mean field Hamiltonian and the particle
number N is the sum of neutrons (Nn) and protons (Np) and
accordingly in Eq. #1$

"N!"pNp""nNn , #6$

with "p ("n) denoting the chemical potential for protons
#neutrons$. The one body mean field equations #4$ and #5$
are similar to the HF equations '7(for the static case and
therefore can be solved self-consistently for a given T fol-
lowing the same procedure as adopted for the conventional
static HF case. This therefore leads to the self-consistent cal-
culation of the average potential, single particle orbitals and
energies ! i , occupation numbers ni , density, total energy E,
etc. for each temperature T. Using ni the entropy S can be
obtained through 'Eq. #3$(and the excitation energy E* is
given by

E*#T $!E#T $#E#T!0 $, #7$

E(T!0) being the energy at zero temperature #ground
state$. It is to be pointed out that the pairing correlations
which are to be included for the correct description of open
shell nuclei, are in fact important only at low temperatures
(T$1 MeV$. Therefore, the pairing is taken into account in
the constant gap approximation '6,9(, only for T!0 case and
is ignored for T%0, i.e., for high excitations.
In the RMF approach one starts with the Lagrangian de-

scribing the nucleons interacting with various meson fields.
The equations of motion are obtained by using the classical
variational principle. Within the mean field approximation
which amounts to treating the field operators as c numbers or
classical fields, one then ends up with a Dirac equation hav-
ing Lorentz scalar and vector #fourth component$ potentials
for nucleons and Klein-Gordon type equations for the meson
fields having sources involving various baryon densities.
This set of equations are to be solved self-consistently yield-
ing quantities like single particle #sp$ potentials, energies,
occupation numbers, densities etc.

We consider here the nucleon #Dirac spinor$ of mass M
interacting with the following meson fields in addition to the
electromagnetic field A": The scalar field + describing the +
meson of mass m+ with coupling constant g+ ; the vector
field , describing the , meson of mass m, with coupling
constant g, ; and the isovector vector field - describing the -
meson of mass m- with coupling constant g- .
The Lagrangian density for this case is taken to be

L!.̄ i/i0"1"#M2"
1
2 1"+1"+#U#+$g+.̄ i. i+

#
1
4)"3)"3"

1
2m,

2,",nu#g,.̄ i0
". i,"#

1
4 R

"3R"3

"
1
2m-

2-"-"#g-.̄ i0
"4. i-"#

1
4 R

"3R"3

#e.̄ i0
"

"#1#4z$
2 . iA" . #8$

The sigma meson is subjected to an additional nonlinear po-
tential,

U#+$!
1
2 m++2"

1
3 g2+

3"
1
4 g3+

4. #9$

The symbols F"3 and )"3 (R"3) denote the field tensors for
the electromagnetic and the vector #isovector$ meson fields.
Employing the mean field approximation and ignoring the

antiparticle #holes in the Dirac sea$ contributions to the
source terms of the meson fields, for the static spherical case
one ends up with the following set of equations.
A coupled set of equations for the large 'f (i)(and small

'g(i)(components of the Dirac spinor:

'M*#r $"V#r $(f i#r $"" 1r#
5 i#1
r # gi#r $!! i f i#r $,

#10$

#" 1r"
5 i"1
r # f i#r $#'M*#r $#V#r $(gi#r $!! igi#r $,

#11$

where

5 i!&" j i" 1
2 # for j i!l i'

1
2

and

M*#r $!M"g++#r $, #12$

V#r $!g,,0#r $"g-4!-! 0#r $"e
#1"43$
2 A0#r $. #13$

Klein-Gordon equation:

" #
12

1r2 #
2
r

1

1r "m*
2 #*#r $!s*#r $. #14$
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kT # $#1

, #2$

for a single particle #sp$ orbit %i%having energy ! i , " de-
notes the chemical potential, k the Boltzmann constant and N
the particle number. The entropy S is obtained through

S!#&
i

'ni ln ni"#1#ni$ln#1#ni$(. #3$

The minimization of ) yields the temperature dependent
mean field equations:

h* i!! i* i , #4$

along with the constraint

&
i
ni!N . #5$

Here h denotes the mean field Hamiltonian and the particle
number N is the sum of neutrons (Nn) and protons (Np) and
accordingly in Eq. #1$

"N!"pNp""nNn , #6$

with "p ("n) denoting the chemical potential for protons
#neutrons$. The one body mean field equations #4$ and #5$
are similar to the HF equations '7(for the static case and
therefore can be solved self-consistently for a given T fol-
lowing the same procedure as adopted for the conventional
static HF case. This therefore leads to the self-consistent cal-
culation of the average potential, single particle orbitals and
energies ! i , occupation numbers ni , density, total energy E,
etc. for each temperature T. Using ni the entropy S can be
obtained through 'Eq. #3$(and the excitation energy E* is
given by

E*#T $!E#T $#E#T!0 $, #7$

E(T!0) being the energy at zero temperature #ground
state$. It is to be pointed out that the pairing correlations
which are to be included for the correct description of open
shell nuclei, are in fact important only at low temperatures
(T$1 MeV$. Therefore, the pairing is taken into account in
the constant gap approximation '6,9(, only for T!0 case and
is ignored for T%0, i.e., for high excitations.
In the RMF approach one starts with the Lagrangian de-

scribing the nucleons interacting with various meson fields.
The equations of motion are obtained by using the classical
variational principle. Within the mean field approximation
which amounts to treating the field operators as c numbers or
classical fields, one then ends up with a Dirac equation hav-
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fields having sources involving various baryon densities.
This set of equations are to be solved self-consistently yield-
ing quantities like single particle #sp$ potentials, energies,
occupation numbers, densities etc.

We consider here the nucleon #Dirac spinor$ of mass M
interacting with the following meson fields in addition to the
electromagnetic field A": The scalar field + describing the +
meson of mass m+ with coupling constant g+ ; the vector
field , describing the , meson of mass m, with coupling
constant g, ; and the isovector vector field - describing the -
meson of mass m- with coupling constant g- .
The Lagrangian density for this case is taken to be

L!.̄ i/i0"1"#M2"
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2 1"+1"+#U#+$g+.̄ i. i+

#
1
4)"3)"3"
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2m,

2,",nu#g,.̄ i0
". i,"#
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"3R"3
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The symbols F"3 and )"3 (R"3) denote the field tensors for
the electromagnetic and the vector #isovector$ meson fields.
Employing the mean field approximation and ignoring the

antiparticle #holes in the Dirac sea$ contributions to the
source terms of the meson fields, for the static spherical case
one ends up with the following set of equations.
A coupled set of equations for the large 'f (i)(and small

'g(i)(components of the Dirac spinor:

'M*#r $"V#r $(f i#r $"" 1r#
5 i#1
r # gi#r $!! i f i#r $,
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, #2$

for a single particle #sp$ orbit %i%having energy ! i , " de-
notes the chemical potential, k the Boltzmann constant and N
the particle number. The entropy S is obtained through
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The minimization of ) yields the temperature dependent
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&
i
ni!N . #5$

Here h denotes the mean field Hamiltonian and the particle
number N is the sum of neutrons (Nn) and protons (Np) and
accordingly in Eq. #1$
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E(T!0) being the energy at zero temperature #ground
state$. It is to be pointed out that the pairing correlations
which are to be included for the correct description of open
shell nuclei, are in fact important only at low temperatures
(T$1 MeV$. Therefore, the pairing is taken into account in
the constant gap approximation '6,9(, only for T!0 case and
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Nucleus + vapor vapor

Subtraction method  
Bonche-Levit-Vautherin procedure
A vapor subtraction procedure is used to account for unbound states and 
to remove long range Coulomb repulsion between the hot nucleus and 
the gas as well as the contribution of the external nucleon gas. 

Bonche, Levit, and Vautherin, NPA 427, 278 (1984); 436, 265 (1985) 
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Subtraction method  
Bonche-Levit-Vautherin procedure
They observed that the mean field equations have two solutions for a given chemical 
potential and temperature. One of these can be associated with a nucleus in 
equilibrium with the evaporated nucleons (nucleus+gas) while the other consists 
of a gas of nucleons alone.  

They determined the properties of the hot nucleus in terms of the difference 
between quantities associated with the the nucleus+gas and those of the gas.  

Formally, this is done by defining a subtracted thermodynamic potential as the 
difference between that of the nucleus+gas and that of the gas, with the exception 
of the Coulomb contribution. In particular, the baryon and proton numbers of the 
hot nucleus are then

R. LISBOA, M. MALHEIRO, AND B. V. CARLSON PHYSICAL REVIEW C 93, 024321 (2016)

In the expression above, we have also subtracted the harmonic
oscillator estimate of the center-of-mass energy,

Ecm = 3
4

!ω0 coth
(

!ω0

2T

)
, (45)

where we take !ω0 = 41A−1/3 MeV, to obtain an expression
for the total internal energy of the nucleus at finite temperature.

At temperatures above about 3–4 MeV, unbound states
begin to make important contributions to the density. Bonche,
Levit, and Vautherin [9,10] proposed a method to take these
states into account and to extend mean field calculations to
even higher temperatures. They observed that the mean field
equations have two solutions for a given chemical potential and
temperature. One of these can be associated with a nucleus in
equilibrium with the evaporated nucleons (nucleus+gas) while
the other consists of a gas of nucleons alone. They determined
the properties of the hot nucleus in terms of the difference
between quantities associated with the the nucleus+gas and
those of the gas. Formally, this is done by defining a subtracted
thermodynamic potential as the difference between that of the
nucleus+gas "n+g and that of the gas "g , with the exception of
the Coulomb contribution to be discussed below. In particular,
the baryon and proton numbers of the hot nucleus are then
found to be

A =
∫

d3r [ρB,n+g(r⃗) − ρB,g(r⃗)],

Z =
∫

d3r [ρp,n+g(r⃗) − ρp,g(r⃗)], (46)

where ρB,n+g and ρp,n+g are the baryon and proton densities
of the nucleon+gas solution, respectively, while ρB,g and ρp,g

are the corresponding quantities for the gas solution. The
energy and entropy associated with the hot nucleus are also the
difference between those of the two solutions, as are quantities,
such as rms radii, that depend linearly on the densities.

The Coulomb contribution to the thermodynamic potential
must be treated differently due to its long range, which
Bonche, Levit, and Vautherin [9,10] found it to lead to strong
instabilities. They thus modified the Coulomb term so that the
only Coulomb interaction that contributes is that of the protons
in the hot nucleus. This is done by replacing the difference
between the two Coulomb contributions in the thermodynamic
potential by a term taking into account only the contribution
of those protons,

1
2

∫
d3r[ρp,n+g(r⃗)VCρp,n+g(r⃗ ′) − ρp,g(r⃗)VCρp,g(r⃗ ′)]

→ 1
2

∫
d3r{[ρp,n+g(r⃗) − ρp,g(r⃗)]VC

× [ρp,n+g(r⃗ ′) − ρp,g(r⃗ ′)]}. (47)

Note that, with this substitution, the evaporated protons of
the nucleon+gas and gas solutions are still subject to the
Coulomb repulsion of the hot nucleus, as would be expected for
protons leaving the hot system. However, they no longer suffer
Coulomb repulsion due to the other evaporated/gas protons nor
do they contribute to the Coulomb energy.

III. NUMERICAL SOLUTION OF THE DHB EQUATION

We solve the Dirac-Gorkov and the Klein-Gordon equations
by using the same procedure that has been used by many
researchers, among them, Vautherin [49] in the nonrelativistic
Hartree-Fock approximation, Ghambir et al. [50] in the
relativistic mean field + BCS approach, and Lalazissis et al.
[51–53] in the RHB approach. To perform the calculations, the
meson fields and the nucleon wave functions are expanded in
deformed bases of harmonic oscillator states as done before
in relativistic mean field theory for finite nuclei [50]. In actual
calculations, the expansion is truncated at a finite number of
major shells, with the quantum number of the last included
shell denoted by NF in the case of the fermions and by NB for
the bosons. The maximum values are selected so as to assure
the physical significance of the results obtained as we discuss
in Sec. IV.

The spinors of the Dirac-Gorkov equation are expanded in
terms of the eigenfunctions of an axially deformed harmonic-
oscillator potential,

Vosc(r⊥,z) = 1
2Mω2

zz
2 + 1

2Mω2
⊥r2. (48)

The oscillator constants are taken as

βz = 1
bz

=
√

Mωz

!
, β⊥ = 1

b⊥
=

√
Mω⊥

!
, (49)

with volume conservation relating the two constants to that of
a spherically symmetric potential b2

⊥bz = b3
0.

The eigenfunctions of the deformed harmonic oscillator can
be written explicitly as

%α(r⃗) = ψml
nr

(r⊥) ψnz
(z)

ei mlϕ

√
2 π

χms
χmt

, (50)

where α denotes the complete set of quantum numbers (nr ,
ml, nz, ms , and mt) and

ψml
nr

(r⊥) =
Nml

nr

b⊥

√
2 ηml/2 Lml

nr
(η) e−η/2 with

η =
(

r

b⊥

)2

, (51)

ψnz
(z) = Nnz√

bz

Hnz
(ξ )e−ξ 2/2 with ξ = z

bz

.

In Eq. (51), Lml
nr

(η) and Hnz
(ξ ) are Hermite and associated

Laguerre polynomials [54], with the normalization constants,
Nml

nr
and Nnz

, given in Ref. [50]. In these equations, nr and nz

are the number of nodes in the r and z directions, and ml and
ms are the projections of angular momentum and spin on the z
axis. The third component of the total angular momentum "γ

and the parity π are then defined as

"γ = ml+ ms, π = (−1)nz+ml. (52)

We expand the Pauli components of the Dirac spinors,
uftγ (r⊥,z), ugtγ (r⊥,z), vftγ (r⊥,z), and vgtγ (r⊥,z), in terms
of the oscillator eigenfunctions. Inserting these expansions
into the Dirac-Gorkov equation, Eq. (40), we can reduce
the equation to the diagonalization problem of a symmetric
matrix and calculate the Hartree densities and components of
the anomalous density, Eq. (35). The fields of the massive
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In the expression above, we have also subtracted the harmonic
oscillator estimate of the center-of-mass energy,

Ecm = 3
4

!ω0 coth
(

!ω0

2T

)
, (45)

where we take !ω0 = 41A−1/3 MeV, to obtain an expression
for the total internal energy of the nucleus at finite temperature.
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and the parity π are then defined as
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We expand the Pauli components of the Dirac spinors,
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Bound-state method
A simpler approach would be to 
consider a fixed number of single 
particle states, at finite T, to calculate ρ. 
For this works we selected all the 
bound states and the proton states 
below the Coulomb and centripetal 
barrier (but with zero widths, so far) 
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16O, 40Ca, 60Ni, 90Zr, 114Sn, and 208Pb  
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T h e  authors furnish a new parametrization of the Fermi-Gas model description of nuclear 
level densities a t  excitation energies corresponding to the neutron binding energy. The  model 
adopted is the standard Fermi-Gas model with pairing and shell-effect corrections. Particular 
care has been devoted to the inclusion of shell effects and to their parametrization. The  pro- 
cedure for the evaluation of level density parameters has been applied to a data-base of 217 
nuclei covering a mass range 41 A 5 253. A global systematics parametrization has been 
derived which allows for a derivation of level density parameters for nuclei where experimental 
information is not available. 
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parameters, global level density parameter systematics 

I. INTRODUCTION 
The density of nuclear states is a funda- 

mental ingredient for all the application of 
the statistical theories of nuclear reactions. 
Except for the very low excitation energy 
part of the nuclear spectra, where experi- 
mental information is available for a wide 
class of nuclei, the computation of the density 
of nuclear states must rely on model calcula- 
tions. Many nuclear structure models have 
been employed and tested for the calculation 
of nuclear state densities at excitation energies 
corresponding to the neutron binding energy 
(of the order of 8MeV for medium and heavy 
nuclei). This is because at those excitation 
energies an important experimental quantity 
can be related to the density of nuclear levels ; 
the average spacings of s-wave neutron res- 
onances (D),=,. A large set of information 
on these quantities has been collected and 
compiled several times in the past. A rela- 
tively recent compilation'') has been made 

available which provides a large data-base on 
which the traditional level density models 
can be tested. Of course this is not the first 
time that such an analysis has been made. 
However, the recent data-base has been used 
only for particular and specific purposes on 
limited mass ranges. It is therefore interest- 
ing to repeat the calculation using well esta- 
blished techniques in order to furnish the 
utilizers with the best possible parametriza- 
tion. 

In this work we will apply the Fermi-Gas 
model with the usual correction for pairing 
correlations. We will then discuss in detail 
the influence of the shell effects and their 
inclusion into the Fermi-Gas description as 
proposed by a technique which is widely 
applied in the recent versions of most of the 
computer codes for nuclear reaction calcula- 
tions. 
* Tokai-mura, Ibaraki-ken 3 1 9 - 1 1 .  

Permanent address: ENEA, v. le  G. B .  Ercolani, 
8 I-40138 Bologna, ITALY. 
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Fig. 7 Level density parameter a ( * )  systematics for even 2-even N nuclei, 

even 2-odd N nuclei, odd 2-even N nuclei and odd 2-odd N nuclei 

tion of nuclear level density a t  energies cor- 
responding to the neutron binding energy. 
Our parametrization can be easily incorporated 
into those computer codes that use the Fermi- 
Gas model prescriptions for the calculation 
of nuclear level densities. Our analysis in- 
cluded pairing correlations as  well as  shell 
inhomogeneities effects into the relations 
based on the Fermi-Gas model. 

We would like to remark here that using 
our global parametrization the evaluation of 
the nuclear level density parameters can be 

performed with good accuracy for nuclei 
where experimental information on the aver- 
age spacing of neutron resonances is not 
available. Also, the inclusion of further re- 
finement in the theoretical description can be 
eased by our analysis. We plan to develop 
an empirical determination of the collective 
contribution, in order to widen the physical 
basis on which the Fermi-Gas model can be 
employed for the calculation of nuclear level 
density. 
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inhomogeneities into the single-particle spec- 
trum and consequently redefined the thermody- 
namical quantities necessary to the derivation 
of Eq. ( 3 ) or (4). In this way, the expres- 
sion for the state-density incorporates the 
effects of shell closures. 

A different approach which produces results 
altogether equivalent to those obtained by 
Kataria et al. has been proposed by Ignatyuk 
&  coworker^(^). The advantage of using 
the Ignatyuk approach is that the Fermi-Gas 
relations given above remain unchanged ex- 
cept for a. 

The Ignatyuk procedure is based on the 
superfluid model which predicts a phase transi- 
tion from the superfluid to the normal state 
a t  temperatures of the order of T,,=0.5674. 
Above this critical temperature the nucleus 
behaves as a Fermi-Gas. In this approach 
a depends on the excitation energy as well 
as on the shell correction energy E g h  

E,, 
U a (U)  = a( *) [ 1 + ~ (1 - e - r  ')] ( 15) 

where a(*) is the asymptotic level density 
parameter to which a ( U )  tends for high ex- 
citation energies and y a dumping parameter. 

The shell correction energy E,, is defined 
as the difference between the experimental 
nuclear mass and a smooth theoretical mass 
value M w ,  derivable, for example, from a 
liquid-drop model 

The evaluation of this quantity requires some 
care because different liquid-drop model para- 
metrizations are available from literature and 
they produce quite different values for E,, 
(see the next chapter). 

Following this approach, for each isotope, 
a(*) is determined from the average neutron 
resonance spacing. In fact, the shell correc- 
tion energy can be evaluated using Eq. (16) 
and the corresponding level density parameter 
a can be adjusted to fit the experimental 
( D ) e X P l = ,  by varying a(*). 

Using this technique we have repeated the 
calculations for the nuclei in our data-base 

and the result of the a(*)-systematics is shown 
in Fig. 5. It clearly appears that the shell 
effects have, to a great extent, been appro- 
priately taken into account by the procedure 
described above. In Fig. 5 we also show an 
evaluated "experimental" error associated to 
each a(*). This is just the direct effect of 
the experimental uncertainties on ( D ) e x P l = o .  

The value of the dumping parameter y ado- 
pted in our calculation was('") 

B .-5.9059 
rms- 0.976 M O T '  

100 200 

Massnumber A 

~ ' " ~ " ' ~ ' " " ' " ' " ' "  

Fig. 5 Level density parameter a ( * )  systematics 
Error-bars associated to a ( * )  correspond 
to the experimental uncertainties on 
( D > e x P l , ~ .  The  solid line corresponds to 
the least-squares fit to Eq. (20). rms 
stands for root mean square deviation. 

4. Other Effects 
There are a number of other effects that 

can be incorporated into the Fermi-Gas des- 
cription of the nuclear level densities. The 
most important of those are parity and col- 
lective effects. 

Nuclear energy levels have a clearly un- 
symmetrical parity distribution in the lower 
part of the spectrum. As the excitation 
energy increases, however, the number (or 
density) of levels with opposite parity tends 
to be the same. Except for some light nuclei, 
the parity distribution at  excitation energies 
corresponding to the neutron separation energy 
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 2140Ca binding energy

caloric curvelog - density of states

• weak dependence on the interaction 
(non-linear vs. density dependent) 

• log10 density of states substantially 
underestimated respect to 
phenomenological approaches 

• no appreciable differences between 
the two methods
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 2260Ni binding energy

caloric curvelog - density of states

• weak dependence on the interaction 
(non-linear vs. density dependent) 

• log10 density of states closer to 
phenomenological estimates 

• appreciable differences between the 
two methods for higher excitation 
energies
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 2360Ni binding energy

caloric curvelog - density of states

comment
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 2490Zr

log - density of states caloric curve

binding energy

• weak dependence on the interaction 
(non-linear vs. density dependent) 

• log10 density of states substantially 
underestimated respect to 
phenomenological approaches 

• appreciable differences between the 
two methods for higher excitation 
energies
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 25114Sn binding energy

caloric curvelog - density of states

• weak dependence on the interaction 
(non-linear vs. density dependent) 

• log10 density of states closer to 
phenomenological estimates 

• appreciable differences between the 
two methods for higher excitation 
energies
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 26114Sn

caloric curvelog - density of states

binding energy
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 27208Pb binding energy

caloric curvelog - density of states

• mild dependence on the interaction 
(non-linear vs. density dependent) 

• log10 density of states substantially 
underestimated respect to 
phenomenological approaches 
(Mengoni but not Pezer) 

• appreciable differences between the two 
methods for higher excitation energies
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 28208Pb binding energy

caloric curvelog - density of states
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Open issues

1. Importance of the effective mass 

2. Non negligible widths for resonance states 

3. Corrections for low excitation energies  

4. Extension of the combinatorial approach to 

higher energies
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Combinatorial method

Subtraction method

Frozen bound states

ρ

Particle 
vibration 
coupling

Gamow states

Our project
Relativistic  
mean field

input

inputinput
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Extensions - CSM (work in progress)
Complex scaling method  
 Y. K. Ho, Phys. Rep. 99, 1 (1983); A. T. Kruppa et al., Phys. Rev. C 37, 383 (1988); Guo et al., CPC 181, 500 (2010), 
Guo et al., PRC 82, 034318 (2010)

The starting point of the CSM is a transformation of the Hamiltonian H. First one defines the 
unbounded non-unitary scaling operator U(θ) where θ is real 

The transformed complex scaled Hamiltonian is of the form 

The corresponding complex scaled equation is

U(✓) =

 
ei✓Ŝ 0

0 ei✓Ŝ
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<latexit sha1_base64="hbR1siV13paHdRi/TvcOO/2aQSk=">AAACG3icbVC7SgNBFL3rM8ZX1FKLQRGswq6NNoJokzIB84BsWGYnd83g7IOZu0II/oeN/2FlY6GIlWBh56c4eQhqPDBw5pxzmbknzJQ05Lofzszs3PzCYmGpuLyyurZe2thsmDTXAusiValuhdygkgnWSZLCVqaRx6HCZnh1PvSb16iNTJML6mfYifllIiMpOFkpKB1WAp96SJz5mZHf/IT5aK/KJqbdoLTnlt0R2DTxJmTvdOe+9gkA1aD05ndTkceYkFDcmLbnZtQZcE1SKLwp+rnBjIsrfoltSxMeo+kMRrvdsH2rdFmUansSYiP158SAx8b049AmY04989cbiv957Zyi485AJllOmIjxQ1GuGKVsWBTrSo2CVN8SLrS0f2WixzUXZOss2hK8vytPk8Zh2XPLXs22cQZjFGAbduEAPDiCU6hAFeog4BYe4AmenTvn0XlxXsfRGWcyswW/4Lx/AVB3o88=</latexit><latexit sha1_base64="zQaHnH7f8pL/C71ODUuzz+PO97w=">AAACG3icbVC7SgNBFJ31GeNr1VKRwSBYhd002ghBm5QJmAdkQ5id3CRDZh/M3BVCSOk/2PgfqWwsFLESLPwGf8LJQ9DEAwNnzjmXmXv8WAqNjvNpLS2vrK6tpzbSm1vbO7v23n5FR4niUOaRjFTNZxqkCKGMAiXUYgUs8CVU/d712K/egtIiCm+wH0MjYJ1QtAVnaKSmnSs0PewCMurFWvzwS+qBuUqTWHSbdsbJOhPQReLOSCZ/NCp93R2Pik373WtFPAkgRC6Z1nXXibExYAoFlzBMe4mGmPEe60Dd0JAFoBuDyW5DemqUFm1HypwQ6UT9PTFggdb9wDfJgGFXz3tj8T+vnmD7ojEQYZwghHz6UDuRFCM6Loq2hAKOsm8I40qYv1LeZYpxNHWmTQnu/MqLpJLLuk7WLZk2rsgUKXJITsgZcck5yZMCKZIy4eSePJJn8mI9WE/Wq/U2jS5Zs5kD8gfWxzcuvKU1</latexit><latexit sha1_base64="zQaHnH7f8pL/C71ODUuzz+PO97w=">AAACG3icbVC7SgNBFJ31GeNr1VKRwSBYhd002ghBm5QJmAdkQ5id3CRDZh/M3BVCSOk/2PgfqWwsFLESLPwGf8LJQ9DEAwNnzjmXmXv8WAqNjvNpLS2vrK6tpzbSm1vbO7v23n5FR4niUOaRjFTNZxqkCKGMAiXUYgUs8CVU/d712K/egtIiCm+wH0MjYJ1QtAVnaKSmnSs0PewCMurFWvzwS+qBuUqTWHSbdsbJOhPQReLOSCZ/NCp93R2Pik373WtFPAkgRC6Z1nXXibExYAoFlzBMe4mGmPEe60Dd0JAFoBuDyW5DemqUFm1HypwQ6UT9PTFggdb9wDfJgGFXz3tj8T+vnmD7ojEQYZwghHz6UDuRFCM6Loq2hAKOsm8I40qYv1LeZYpxNHWmTQnu/MqLpJLLuk7WLZk2rsgUKXJITsgZcck5yZMCKZIy4eSePJJn8mI9WE/Wq/U2jS5Zs5kD8gfWxzcuvKU1</latexit><latexit sha1_base64="i8JH7qDc1VbHZFVnOuWKlgZLvhc=">AAACG3icbVDLSgMxFM3UV62vqks3wSK4KjPd6EYouumygn1AZyiZ9E4bmskMyR2hlP6HG3/FjQtFXAku/BvTh6CtBwIn55xLck+YSmHQdb+c3Nr6xuZWfruws7u3f1A8PGqaJNMcGjyRiW6HzIAUChooUEI71cDiUEIrHN5M/dY9aCMSdYejFIKY9ZWIBGdopW6xUuv6OABk1E+N+OFX1Ad7lTax6naLJbfszkBXibcgJbJAvVv88HsJz2JQyCUzpuO5KQZjplFwCZOCnxlIGR+yPnQsVSwGE4xnu03omVV6NEq0PQrpTP09MWaxMaM4tMmY4cAse1PxP6+TYXQZjIVKMwTF5w9FmaSY0GlRtCc0cJQjSxjXwv6V8gHTjKOts2BL8JZXXiXNStlzy96tW6peL+rIkxNySs6JRy5IldRInTQIJw/kibyQV+fReXbenPd5NOcsZo7JHzif30B9oYo=</latexit>
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Extensions - CSM (work in progress)

• A bound state eigenvalue of  H  remains also an eigenvalue of  HΘ 

• A resonance pole ε = E -iΓ/2 of the Green-operator of H is an eigenvalue 
of  HΘ       

• The continuous part of the spectrum of HΘ is rotated down into the 
complex energy plane by the angle θ

Complex scaling method  
 Y. K. Ho, Phys. Rep. 99, 1 (1983); A. T. Kruppa et al., Phys. Rev. C 37, 383 (1988); Guo et al., CPC 181, 500 (2010), 
Guo et al., PRC 82, 034318 (2010)

Resonant States; Eigenvalues of H(θ) with a L2

basis set
(L2 basis set ; Gaussian basis functions)
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Extensions - PVC (work in progress)

KLFTP-BLTP Joint workshop on Nuclear Physics  , Sept. 6-8, 201103:17 22/35

single particle strength:

+

+

RPA-modes

µ

µ

mean field pole part

=

non-relativistic investigations:
Ring, Werner (1973)
Hamamoto, Siemens (1976)
Perazzo, Reich, Sofia (1980)
Bortignon et al (1980)
Bernard, Giai (1980)
Platonov (1981)
Kamerdzhiev, Tselyaev (1986)

Dyson equation

Particle-vibrational coupling (PVC)

energy dependent self-energy

Particle-vibrational coupling (PVC)

energy dependent self-energy eff. Potential veff

→ self-energy Σ

Sν

Dyson-equation

Litvinova and Ring, PRC 73, 44328 (2006), Ring talk @ 2011 KLFTP-BLTP Joint Workshop 

KLFTP-BLTP Joint workshop on Nuclear Physics  , Sept. 6-8, 201103:17 25/35

Single particle spectrum

meff 0.76      0.92       1.0 0.71      0.85       1.0

E. Litvinova and P. R., PRC 73, 44328 (2006)

Single particle spectrum in the Pb-region:Single particle spectrum in the Pb-region:

The density of states 
above and below the 
Fermi surface is 
increased
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Thank you very much


