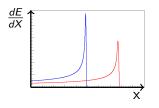


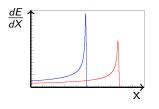
First results of the DIGIGARF experiment: extracting signal's shape parameters using real-time interpolation

Pietro Ottanelli INFN Sezione di Flrenze EUNPC Bologna 05 September 2018


- Exclusive selection of particular direct reactions channel:
 - \$ strip/pickup reactions;
 - ◊ exchange reactions;

- Exclusive selection of particular direct reactions channel:
 - \$ strip/pickup reactions;
 - $\diamond~$ exchange reactions;

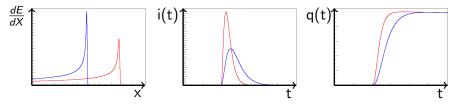
- Exclusive selection of statistical decay chains:
 - \diamond Clustering in light nuclei (e.g ^{24,25}Mg **A. Camaiani**);


- Exclusive selection of particular direct reactions channel:
 - \$ strip/pickup reactions;
 - $\diamond~$ exchange reactions;
- Exclusive selection of statistical decay chains:
 - ◊ Clustering in light nuclei (e.g ^{24,25}Mg A. Camaiani);
- Isotopic distributions of products:
 - ◊ Isospin transport phenomena (S. Piantelli);
 - $\diamond E_{sym}$ term of nEOS;
 - ◊ link with Nuclear Astrophysics

Pulse Shape Analysis (PSA)

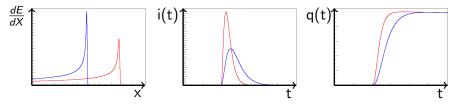
• fragments with different Z and A, same Energy (E);

Pulse Shape Analysis (PSA)

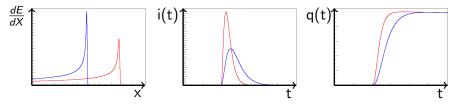

- fragments with different Z and A, same Energy (E);
- different charge distribution in detector;

2 di 12 Charged Particle Identification Pulse Shape Analysis (PSA) $\frac{dE}{dX} \int_{0}^{1} \int_{0}^{$

Pulse Shape Analysis (PSA)

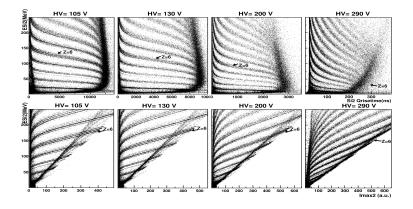

- fragments with different Z and A, same Energy (E);
- different charge distribution in detector;
- different shape of signals $i(t) \in q(t)$;

x


Pulse Shape Analysis (PSA)

- fragments with different Z and A, same Energy (E);
- different charge distribution in detector;
- different shape of signals $i(t) \in q(t)$;
- dependence of shape on Z,A and E;

Pulse Shape Analysis (PSA)

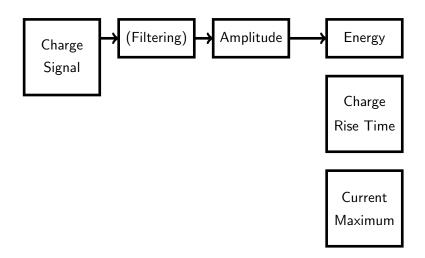

- fragments with different Z and A, same Energy (E);
- different charge distribution in detector;
- different shape of signals $i(t) \in q(t)$;
- dependence of shape on Z,A and E;
- possibility to use shape-dependent quantities (e.g Q_{rise}, I_{max});

Pulse Shape Analysis (PSA)

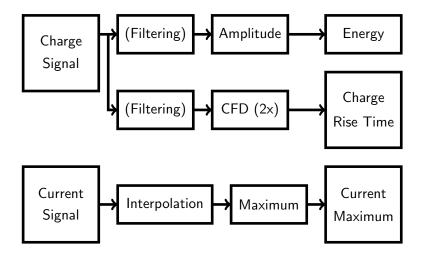
- fragments with different Z and A, same Energy (E);
- different charge distribution in detector;
- different shape of signals $i(t) \in q(t)$;
- dependence of shape on Z,A and E;
- possibility to use shape-dependent quantities (e.g Q_{rise}, I_{max});
- FAZIA R&D studies $\Rightarrow I_{max}$ is better than Q_{rise} .

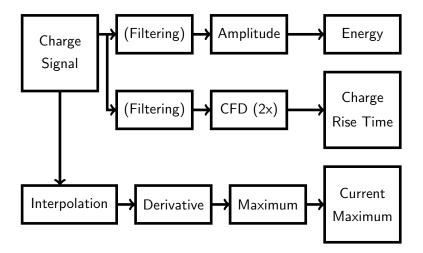
2 di 12

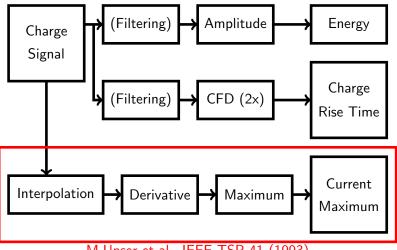
G.Pasquali et al., EPJ A 50(2014)

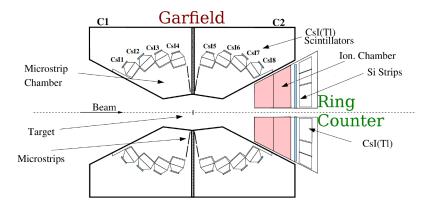

Pulse Shape Analysis Gathering the ingredients

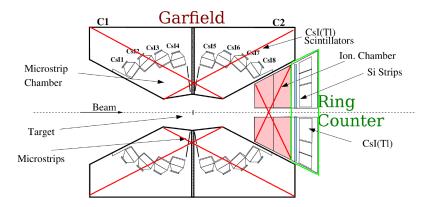

Energy


Charge


Rise Time


Current Maximum




M.Unser et al., IEEE TSP 41 (1993)

4 di 12 The GARFIELD+RCo apparatus An overview

M. Bruno et al., EPJ A 49(2013)

4 di 12 The GARFIELD+RCo apparatus An overview

M. Bruno et al., EPJ A 49(2013)

Garfield FEE upgrade

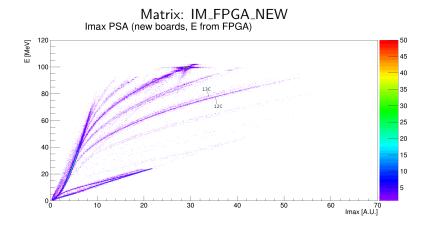
Board	Channels	ADC	DSP	FPGA
Old	1	12bit	yes	no
New	2	14bit	yes	yes

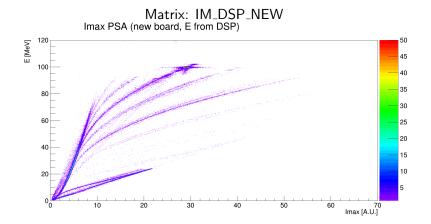
140 mm

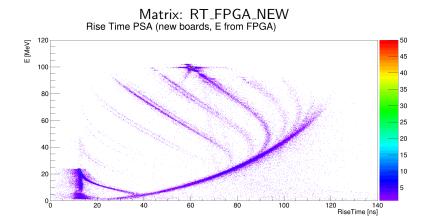
- Reaction: ¹⁶O@107*MeV* +^{12,13} *C*;
- Measured for 2.5 days at LNL;
- No IC in front of RCo;
- both old and new boards used (comparison);

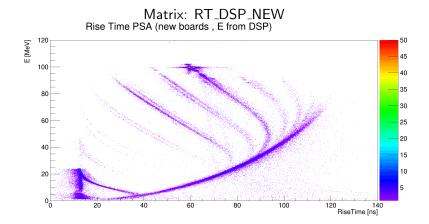
- Reaction: ¹⁶O@107*MeV* +^{12,13}*C*;
- Measured for 2.5 days at LNL;
- No IC in front of RCo;
- both old and new boards used (comparison);

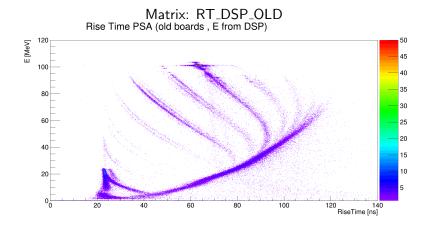
Summary of available identification matrices.				
CODE	Parameter	Energy	Electronics	
RT_DSP_OLD	RiseTime	DSP	Old	
RT_DSP_NEW	RiseTime	DSP	New	
RT_FPGA_NEW	RiseTime	FPGA	New	
IM_DSP_NEW	Imax	DSP	New	
IM_FPGA_NEW	Imax	FPGA	New	


Summary of available Identification matrices


- Reaction: ¹⁶O@107*MeV* +^{12,13}*C*;
- Measured for 2.5 days at LNL;
- No IC in front of RCo;
- both old and new boards used (comparison);


Summary of available identification matrices:				
CODE	Parameter	Energy	Electronics	
RT_DSP_OLD	RiseTime	DSP	Old	
RT_DSP_NEW	RiseTime	DSP	New	
RT_FPGA_NEW	RiseTime	FPGA	New	
IM_DSP_NEW	Imax	DSP	New	
IM_FPGA_NEW	Imax	FPGA	New	

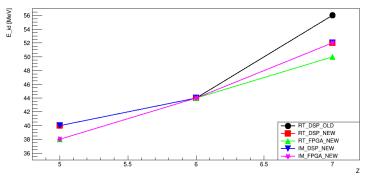

Summary of available Identification matrices:

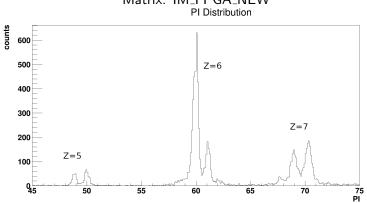

Presenting results from the best performing detector.

1

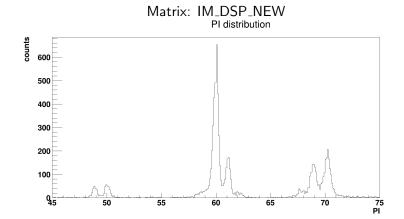
Energy thresholds for mass identification (MeV)

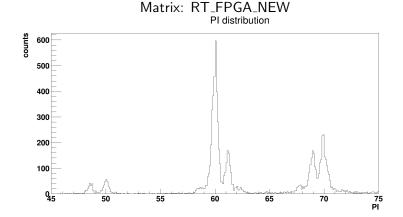
Z	RT_DSP_OLD	RT_DSP_NEW	RT_FPGA_NEW	IM_DSP_NEW	IM_FPGA_NEW
5	40	40	38	40	38
6	44	44	44	44	44
7	56	52	50	52	52

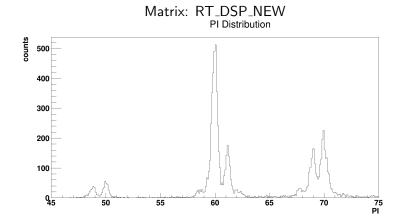

ı.

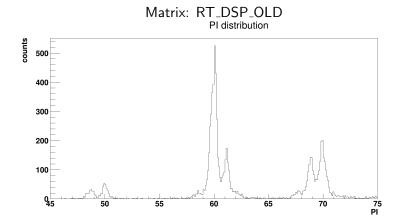

The DIGIGARF experiment: first Results Identification thresholds - PRELIMINARY

Energy thresholds for mass identification (MeV)


Ζ	RT_DSP_OLD	RT_DSP_NEW	RT_FPGA_NEW	IM_DSP_NEW	IM_FPGA_NEW
5	40	40	38	40	38
6	44	44	44	44	44
7	56	52	50	52	52

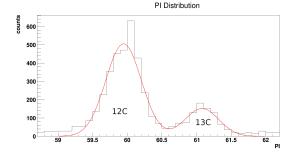

Mass identification threshold





Matrix: IM_FPGA_NEW

10 di 12

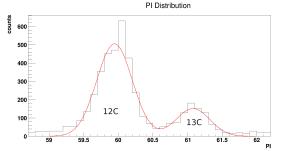

The DIGIGARF experiment: first Results FoM extraction

- Each isotope generates a PI peak (gaussian);
- bi-gaussian fit on the two main peaks $(\forall Z)$;

10 di 12

- Each isotope generates a PI peak (gaussian);
- bi-gaussian fit on the two main peaks $(\forall Z)$;
- separation quantified by:

$$FoM = rac{Centroid_{right} - Centroid_{left}}{2.35(\sigma_{right} + \sigma_{left})}$$



10 di 12

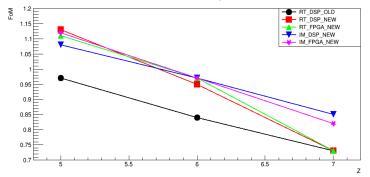
- Each isotope generates a PI peak (gaussian);
- bi-gaussian fit on the two main peaks $(\forall Z)$;
- separation quantified by:

$$FoM = rac{Centroid_{right} - Centroid_{left}}{2.35(\sigma_{right} + \sigma_{left})}$$

- separation limit: FoM>0.7 (FAZIA collaboration)
- Higher FoM means better separation.

11 di 12 The DIGIGARF experiment: first Results FOM values - PRELIMINARY

FoM of the two main peaks

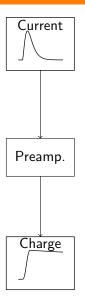

Z	Peaks	RT_DSP_OLD	RT_DSP_NEW	RT_FPGA_NEW	IM_DSP_NEW	IM_FPGA_NEW
	⁹ B - ¹⁰ B	0.97±0.09	1.13 ± 0.11	1.11 ± 0.12	$1.08 {\pm} 0.10$	1.12 ± 0.11
6	$^{12}C - ^{13}C$	0.84±0.04	0.95 ± 0.04	0.97 ± 0.04	0.97 ± 0.04	0.97 ± 0.04
7	¹³ N - ¹⁴ N	0.73±0.05	$0.73 {\pm} 0.04$	$0.74 {\pm} 0.04$	$0.85 {\pm} 0.05$	$0.82 {\pm} 0.05$

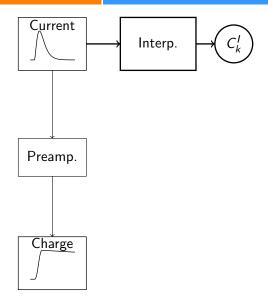
11 di 12 The DIGIGARF experiment: first Results FOM values - PRELIMINARY

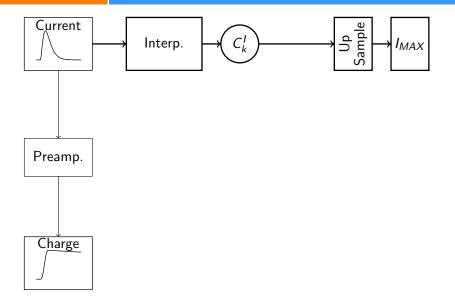
FoM of the two main peaks

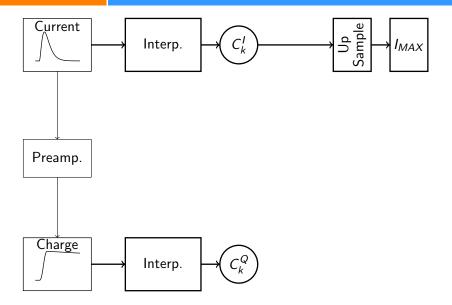
Z	Peaks	RT_DSP_OLD	RT_DSP_NEW	RT_FPGA_NEW	IM_DSP_NEW	IM_FPGA_NEW
	⁹ B - ¹⁰ B	0.97±0.09	1.13 ± 0.11	1.11 ± 0.12	$1.08 {\pm} 0.10$	1.12 ± 0.11
	$^{12}C - ^{13}C$	0.84 ± 0.04	0.95 ± 0.04	0.97 ± 0.04	0.97 ± 0.04	0.97 ± 0.04
7	¹³ N - ¹⁴ N	$0.73 {\pm} 0.05$	$0.73 {\pm} 0.04$	$0.74 {\pm} 0.04$	$0.85 {\pm} 0.05$	$0.82 {\pm} 0.05$

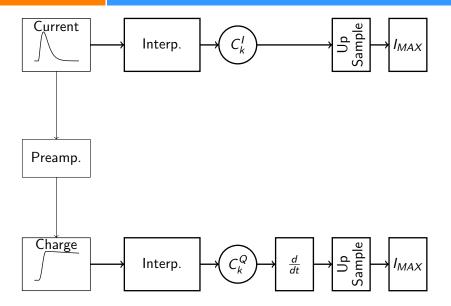
FoM of two main peaks

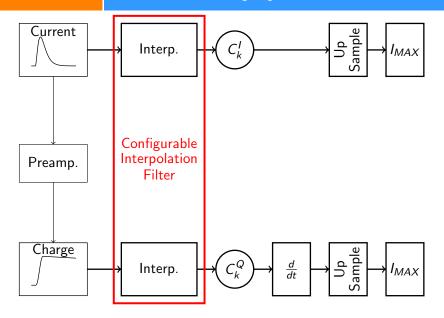

- implemented on-board interpolation algorithm and differentiation;
- the current maximum extraction from charge is working;

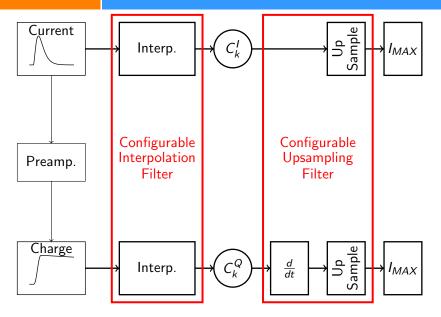

- implemented on-board interpolation algorithm and differentiation;
- the current maximum extraction from charge is working;
- obtained slightly better performances than before;
 - ▶ no significative lowering of thresholds (except Z=7);
 - ▶ better FoM values for Z=5-7;
 - ▶ better FoM values using Imax (Z=7);

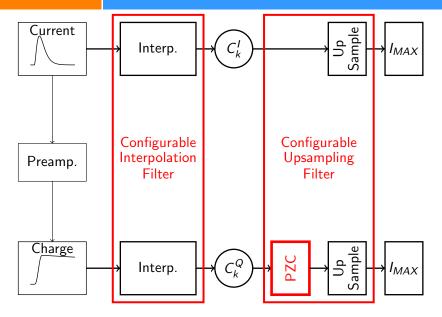

- implemented on-board interpolation algorithm and differentiation;
- the current maximum extraction from charge is working;
- obtained slightly better performances than before;
 - ▶ no significative lowering of thresholds (except Z=7);
 - ▶ better FoM values for Z=5-7;
 - ▶ better FoM values using Imax (Z=7);
- GARFIELD+RCo is the first apparatus to implement this kind of signal processing;

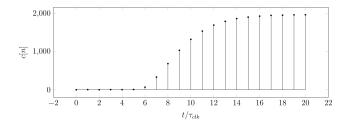

- implemented on-board interpolation algorithm and differentiation;
- the current maximum extraction from charge is working;
- obtained slightly better performances than before;
 - ▶ no significative lowering of thresholds (except Z=7);
 - ▶ better FoM values for Z=5-7;
 - ▶ better FoM values using Imax (Z=7);
- GARFIELD+RCo is the first apparatus to implement this kind of signal processing;
- FAZIA papers: even better results expected with better detectors;

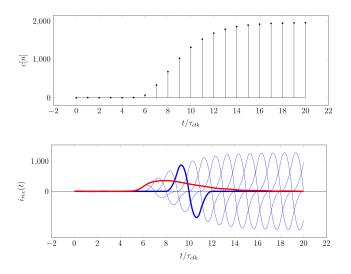

Thanks for your attention!







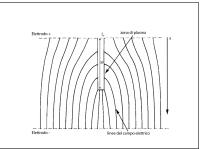





On-board PSA: I_{Max} evaluation. An example

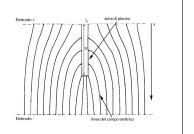
On-board PSA: I_{Max} evaluation. An example

On-board PSA: I_{Max} evaluation. An example

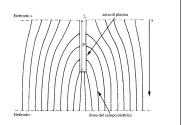


Tempo di plasma

 impinging particle ⇒ charge carriers;


Tempo di plasma

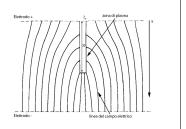
- impinging particle ⇒ charge carriers;
- e-h plasma shields the Electric Field (*E*);


Tempo di plasma

- impinging particle ⇒ charge carriers;
- e-h plasma shields the Electric Field (*E*);
- plasma erosion time depends on density, size, *E*.

Tempo di plasma

- impinging particle ⇒ charge carriers;
- e-h plasma shields the Electric Field (*E*);
- plasma erosion time depends on density, size, *E*.



Collection time

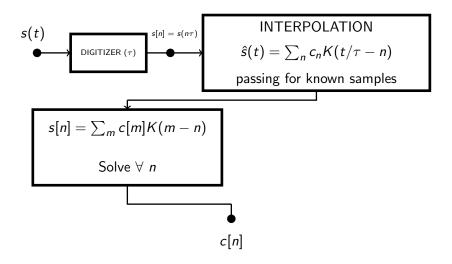
• carriers drifting towards electrodes;

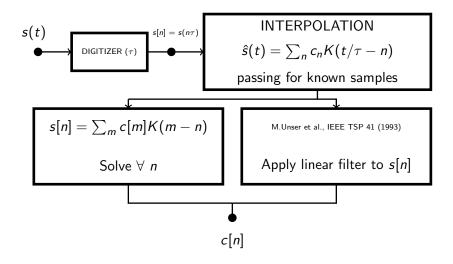
Tempo di plasma

- impinging particle ⇒ charge carriers;
- e-h plasma shields the Electric Field (*E*);
- plasma erosion time depends on density, size, *E*.

Collection time

- carriers drifting towards electrodes;
- depends on distance of carriers from electrodes.





INTERPOLATION

$$\hat{s}(t) = \sum_{n} c_n K(t/\tau - n)$$

passing for known samples

Application of linear filter (F) to the signal: $\hat{s}(t) = \sum_{n} c_n K(t/\tau - n) \Rightarrow F(\hat{s}(t)) = \sum_{n} c_n F(K(t/\tau - n))$ Application of linear filter (F) to the signal: $\hat{s}(t) = \sum_{n} c_n K(t/\tau - n) \Rightarrow F(\hat{s}(t)) = \sum_{n} c_n F(K(t/\tau - n))$

It is possible to evaluate, from c_n , the samples of the filtered signal, taken at a frequency $1/\tau$ or higher harmonics (upsampling) using a battery of lienar filters Application of linear filter (F) to the signal: $\hat{s}(t) = \sum_{n} c_n K(t/\tau - n) \Rightarrow F(\hat{s}(t)) = \sum_{n} c_n F(K(t/\tau - n))$

It is possible to evaluate, from c_n , the samples of the filtered signal, taken at a frequency $1/\tau$ or higher harmonics (upsampling) using a battery of lienar filters

Can be used to obtain current signal from charge signal (PSA).

Onboard interpolation Resampling through linear filters

$$\hat{s}(t) = \sum_{n} c_{n} K(t/\tau - n) \ v(t) = F(\hat{s}(t)) = \sum_{n} c_{n} F(K(t/\tau - n))$$
$$F(K(x)) \Rightarrow K_{F}(x)$$

Onboard interpolation Resampling through linear filters

$$\hat{s}(t) = \sum_{n} c_{n} K(t/\tau - n) \ v(t) = F(\hat{s}(t)) = \sum_{n} c_{n} F(K(t/\tau - n))$$
$$F(K(x)) \Rightarrow K_{F}(x)$$

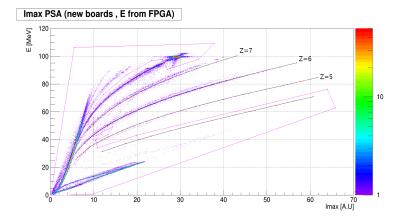
Case 1: no upsampling

$$v[m] = v(m\tau) = \sum_n c_n K_F(m-n) \Rightarrow 1$$
 linear filter!

Onboard interpolation Resampling through linear filters

$$\hat{s}(t) = \sum_{n} c_{n} K(t/\tau - n) \ v(t) = F(\hat{s}(t)) = \sum_{n} c_{n} F(K(t/\tau - n))$$
$$F(K(x)) \Rightarrow K_{F}(x)$$

Case 1: no upsampling


$$v[m] = v(m\tau) = \sum_{n} c_n K_F(m-n) \Rightarrow 1$$
 linear filter!

Case 2: upsampling factor U

$$v[m,j] = v((m+j/U)\tau) = \sum_{n} c_n K_F(m-n+j/U) \ j = 0, ..., U-1$$

$$\Rightarrow U \text{ linear filters!}$$

Linearization procedure

