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First results of the DIGIGARF experiment:
extracting signal's shape parameters using real-time interpolation
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Charged Particle Identification

Why it's needed?

Particle Identification (A,Z) is crucial for several topics:
e Exclusive selection of particular direct reactions channel:
© strip/pickup reactions;
© exchange reactions;
e Exclusive selection of statistical decay chains:
o Clustering in light nuclei (e.g >#?Mg - A. Camaiani);
e |sotopic distributions of products:

o Isospin transport phenomena (S. Piantelli);
¢ Esym term of nEQS;
o link with Nuclear Astrophysics
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Charged Particle Identification
Pulse Shape Analysis (PSA)
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Pulse Shape Analysis (PSA)
fragments with different Z and A, same Energy (E);

different charge distribution in detector;

different shape of signals i(t) e q(t);

dependence of shape on Z,A and E;

possibility to use shape-dependent quantities (e.g Qise,/max);
FAZIA R&D studies = I,.x is better than Qyise.
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G.Pasquali et al., EPJ A 50(2014)
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Pulse Shape Analysis
Gathering the ingredients

Charge (Filtering) —)I Amplitude —)I Energy
Signal
o Charge
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Rise Time
X
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M.Unser et al., IEEE TSP 41 (1993)
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An overview
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The GARFIELD+RCo apparatus
An overview
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The GARFIELD+RCo apparatus
Electronics Upgrade

Garfield FEE upgrade
Board | Channels ADC DSP FPGA

New 2 14bit  yes yes

Old 1 12bit  yes no

¥ 140 mm !
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The DIGIGARF Experiment
An Overview

Reaction: 1°0@107MeV +1213 C;

Measured for 2.5 days at LNL;

No IC in front of RCo;

both old and new boards used (comparison);

Summary of available Identification matrices:

CODE Parameter Energy Electronics
RT_DSP_OLD RiseTime DSP Old
RT_DSP_NEW | RiseTime DSP New

RT_FPGA_NEW | RiseTime FPGA New
IM_DSP_NEW Imax DSP New
IM_FPGA_NEW Imax FPGA New

Presenting results from the best performing detector.
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Identification thresholds - PRELIMINARY

Energy thresholds for mass identification (MeV)

Z | RTDSP.OLD RT.DSP.NEW  RT.FPGA.NEW  IM.DSP.NEW  IM_FPGA_NEW

5 40 40 38 40 38

6 44 44 44 44 44

7 56 52 50 52 52
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The DIGIGARF experiment: first Results

Identification plots - PRELIMINARY

Matrix: RT_DSP_OLD

P1 distribution
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e Each isotope generates a Pl peak (gaussian);

e bi-gaussian fit on the two main peaks (VZ);

e separation quantified by:

Centroidyigh: — Centroidjef:

FoM =
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The DIGIGARF experiment: first Results
FoM extraction

Each isotope generates a Pl peak (gaussian);
bi-gaussian fit on the two main peaks (V.2);
separation quantified by:

Centroid,igh: — Centroidief:
2.35(0vight + Oleft)

separation limit: FoM>0.7 (FAZIA collaboration)

Higher FoM means better separation.
Pl Distribution
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The DIGIGARF experiment: first Results

FOM values - PRELIMINARY

FoM of the two main peaks

Z | Peaks | RT-DSP-OLD  RT.DSP.NEW  RT.-FPGA-NEW  IM-DSP_.NEW  IM_FPGANEW
5 8 -1Up 0.97+0.09 1.1340.11 1.1140.12 1.084-0.10 1.1240.11
6 | 2c-B¢ 0.84-0.04 0.95-+0.04 0.9740.04 0.9740.04 0.9740.04
7| BN 0.73+0.05 0.73+0.04 0.7440.04 0.85-£0.05 0.824-0.05



The DIGIGARF experiment: first Results

FOM values - PRELIMINARY

FoM of the two main peaks

FoMm

z Peaks | RT-DSP-OLD  RT.DSP.NEW  RT_-FPGAINEW  IM.DSP.NEW  IM_FPGA-NEW
5 8 -1Up 0.97+0.09 1.13+0.11 1.1140.12 1.08+0.10 1.1240.11
6 | 2c-B¢ 0.84-0.04 0.95-+0.04 0.9740.04 0.9740.04 0.97-40.04
7| BN 0.73+0.05 0.73+0.04 0.7440.04 0.85-£0.05 0.82+0.05

FoM of two main peaks

RT_DSP_OLD
RT_DSP_NEW
RT_FPGA_NEW
M_DSP_NEW
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- Conclusions and perspectives

e implemented on-board interpolation algorithm and
differentiation;
e the current maximum extraction from charge is working;
e obtained slightly better performances than before;
» no significative lowering of thresholds (except Z=7);
» better FoM values for Z=5-7;
» better FoM values using Imax (Z=7);
e GARFIELD+RCo is the first apparatus to implement this kind
of signal processing;
e FAZIA papers: even better results expected with better
detectors;



Thanks for your attention!
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From current and charge signal!
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On-board PSA: /.. evaluation
From current and charge signal!
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PSA in Silicon detectors
Physical principle

Tempo di plasma

e impinging particle = Boes
charge carriers;

e e-h plasma shields the
Electric Field (E);

e plasma erosion time depends on
density, size, E. oo™

Collection time
e carriers drifting towards electrodes;
e depends on distance of carriers from electrodes.
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Current extracion from Charge signal
On board interpolation

s(1) INTERPOLATION

s[n] = s(n7)

DIGITIZER (+) }—@—A 3(t) = Zn cnK(t/T — n)

passing for known samples
I

L X
s[n] =>_,, c[mK(m — n) M.Unser et al., IEEE TSP 41 (1993)
Solve V n Apply linear filter to s[n]

c[n]



Current extracion from Charge signal
On board differentiation

Application of linear filter (F) to the signal:

8(t) = 2on K (t/T — n) = F(8(t)) = >_, cnF(K(t/7 — n))



Current extracion from Charge signal
On board differentiation

Application of linear filter (F) to the signal:

8(t) = 2on K (t/T — n) = F(8(t)) = >_, cnF(K(t/7 — n))

It is possible to evaluate, from ¢,, the samples of the filtered
signal, taken at a frequency 1/7 or higher harmonics (upsampling)
using a battery of lienar filters



Current extracion from Charge signal
On board differentiation

Application of linear filter (F) to the signal:

8(t) = 2on K (t/T — n) = F(8(t)) = >_, cnF(K(t/7 — n))

It is possible to evaluate, from ¢,, the samples of the filtered
signal, taken at a frequency 1/7 or higher harmonics (upsampling)
using a battery of lienar filters

Can be used to obtain current signal from charge signal (PSA).
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Onboard interpolation
Resampling through linear filters

8(8) = X, oK (t/7 — ) u(t) = F()) = X2, caF (K(t/7 — )
F(K(x) = Kr(x)

Case 1: no upsampling
vim] = v(mt) =", c,Ke(m — n) = 1 linear filter!

Case 2: upsampling factor U

vim,jl = v((m+j/U)T) =3, caKe(m—n+j/U)j=0,.,U~1
= U linear filters!



Linearization procedure

| Imax PSA (new boards , E from FPGA) |
120

E [MeV]

- 2 1
Imax [A.U]



