The Cryogenic Stopping Cell of the IGISOL facility at ELI-NP

Paul Constantin

ELI-NP / IFIN-HH
High Power Laser System (HPLS)
– built by Thales
– 2 arms, 6 outputs
– 2 x 0.1 PW, 10 Hz
– 2 x 1 PW, 1 Hz
– 2 x 10 PW, 0.1 Hz

Gamma Beam System (GBS)
– built by EuroGammaS
– spectral density $0.8-4 \times 10^4 \gamma/(s\cdot eV)$
– narrow bandwidth 0.3-0.5%
– energy range 0.2-19.5 MeV
– linear polarization >99%
The ELI-NP Gamma Beam

\[E_L = 2.4 \text{eV} \]

\[T_e = 720 \text{MeV} \]

\[E_\gamma < 19.5 \text{MeV} \]

\[E_\gamma(\theta, T_e) = \frac{4\gamma_e^2 E_L}{(1 + \delta^2/4 + a_0^2/2) + \gamma_e^2 \theta^2} \]

\[\gamma_e = 1 + T_e/m_e c^2 \]

\[E_\gamma^{\text{max}} = 9.55 \text{eV} \cdot \gamma_e^2 \]
The ELI-NP Gamma Beam

\[E_L = 2.4 \text{eV} \]

\[E_\gamma < 19.5 \text{MeV} \]

\[T_e = 720 \text{MeV} \]
\[\theta < 0.7 \text{ mrad} \]

\[E_\gamma(\theta, T_e) = \frac{4\gamma_e^2E_L}{(1 + \delta^2/4 + a_{0p}^2/2) + \gamma_e^2\theta^2} \]

\[\gamma_e = 1 + T_e/m_e c^2 \]
\[E_{\gamma}^{\max} = 9.55 \text{eV} \cdot \gamma_e^2 \]

\[T_e = 600 \text{ MeV} \]
\[\theta < 0.09 \text{ mrad} \]
The ELI-NP Gamma Beam

\(E_L = 2.4 \text{eV} \)

\(E_{\gamma} < 19.5 \text{MeV} \)

\(T_e = 720 \text{MeV} \)
\(\theta < 0.7 \text{ mrad} \)

\(T_e = 600 \text{ MeV} \)
\(\theta < 0.09 \text{ mrad} \)

\(E_{\gamma \text{max}} = 9.55 \text{ eV} \cdot \gamma_e^2 \)

\[\gamma_e = 1 + \frac{T_e}{m_e c^2} \]

\[E_{\gamma} (\theta, T_e) = \frac{4\gamma_e^2 E_L}{(1 + \delta^2/4 + a_{0p}^2/2) + \gamma_e^2 \theta^2} \]
Radioactive Ion Beams with the Gamma Beam

Beam energy range up to ~19 MeV covers the GDR: RIB via photofission in an actinide thick target

\[^{238}\text{U}(\gamma,f) \]

\[J.T. \text{ Caldwell et al.,} \\
\text{Phys. Rev. C 21} \\
(1980) 1215 \]
Beam energy range up to \(~19\) MeV covers the GDR: RIB via photofission in an actinide thick target.

\[^{238}\text{U}(\gamma,f) \]

Production of exotic neutron-rich fission fragments
Refractory elements: light region Zr-Mo-Rh and heavy rare-earths region around Ce
Production of exotic neutron-rich fission fragments
Refractory elements: light region Zr-Mo-Rh and
heavy rare-earths region around Ce

$^{238}\text{U target}$:
- thick because $\sigma(\gamma,f)\sim 1b$
- sliced in many thin foils: refractory, fast extraction
- tilted foils:
 (1) avoid hitting neighboring foils
 (2) increase γ pathlength w/ increasing thickness
Production of exotic neutron-rich fission fragments
Refractory elements: light region Zr-Mo-Rh and
heavy rare-earths region around Ce

\(^{238}\text{U target}:\)
- thick because \(\sigma(\gamma,f) \sim 1\text{b}\)
- sliced in many thin foils: refractory, fast extraction
- tilted foils:
 (1) avoid hitting neighboring foils
 (2) increase \(\gamma\) pathlength w/ increasing thickness

IGISOL beam line:
ELI-NP, GSI, Giessen, IPN Orsay, IoP Hanoi
Production of exotic neutron-rich fission fragments
Refractory elements: light region Zr-Mo-Rh and heavy rareearths region around Ce

238U target:
- thick because $\sigma(\gamma,f) \sim 1$ b
- sliced in many thin foils: refractory, fast extraction
- tilted foils:
 (1) avoid hitting neighboring foils
 (2) increase γ pathlength w/ increasing thickness

IGISOL beam line:
ELI-NP, GSI, Giessen, IPN Orsay, IoP Hanoi

Phase I
1) Cryogenic Stopping Cell (orthogonal extraction)
2) RFQ (Radio Frequency Quadrupole)
3) MR ToF (Multiple Reflection Time of Flight)
IGISOL beamline: Exotic Neutron-Rich Isotopes

Production of exotic neutron-rich fission fragments
Refractory elements: light region Zr-Mo-Rh and heavy rare-earths region around Ce

\(^{238}\text{U} \) target:
- thick because \(\sigma(\gamma,f) \sim 1b \)
- sliced in many thin foils: refractory, fast extraction
- tilted foils:
 1) avoid hitting neighboring foils
 2) increase \(\gamma \) pathlength w/ increasing thickness

IGISOL beam line:
ELI-NP, GSI, Giessen, IPN Orsay, IoP Hanoi

Phase I
1) Cryogenic Stopping Cell (orthogonal extraction)
2) RFQ (Radio Frequency Quadrupole)
3) MR ToF (Multiple Reflection Time of Flight)

Phase II
1) \(\beta \)-decay station: HPGe detectors, tape station
2) collinear laser spectroscopy station
Fission fragment release rates

Geant4 photofission implementation
Target foils: 3μm UF₄ with 0.5μm graphite backing
Fission fragment release rates

Geant4 photofission implementation
Target foils: 3µm UF$_4$ with 0.5µm graphite backing
Fission fragment release rates

Geant4 photofission implementation
Target foils: 3μm UF$_4$ with 0.5μm graphite backing

- Photofission rate
- Fragment release rate; Ziegler
- Fragment release rate; Schwietz

![Graph 1](image1.png)
![Graph 2](image2.png)
Fission fragment release rates

Geant4 photofission implementation

Target foils: 3μm UF₄ with 0.5μm graphite backing

For beam rate 10^{12}γ/s: $4 \cdot 10^7$ frag/s
Fragment Slowing Down in Gas

Geant4: He, $T=70K$, $p=300$mbar ($\rho=0.206$mg/cm3)
$>95\%$ of fragments stop in 11.3cm \rightarrow **width~24cm**
Fragment Slowing Down in Gas

Geant4: He, T=70K, p=300mbar (ρ=0.206mg/cm³)

>95% of fragments stop in 11.3cm → **width~24cm**

Space charge = He⁺ cloud created by fragment (>90%) and e⁺/e⁻ (<10%) induced ionization of He gas

Above a certain **charge density rate Q**: field saturation, strong e-ion recombination, weak plasma.
Fragment extraction – space charge effect

SIMION 8.1: solve Poisson equation dynamically (PIC simulation) with ionic charge distribution from GEANT4 as input → **extraction efficiency** ε and **time** τ

(a) $\rho=0.21 \text{ mg/cm}^3$

$E=100 \text{ V/cm}$

$\varepsilon = 89\% \quad \langle \tau \rangle = 6.8\text{ms}$

(b) $\rho=0.21 \text{ mg/cm}^3$

$E=40 \text{ V/cm}$

$\varepsilon = 67\% \quad \langle \tau \rangle = 17\text{ms}$
Fragment extraction – RF carpet transport

\[V(t) = V_{DC} + V_{RF} \sin(2\pi \nu_{RF} t) \]

\[E_{eff} = \frac{1}{2} \frac{m}{q} \frac{\mu_0^2 \rho_0^2 V_{RF}^2}{r_0^3} \]
Fragment extraction – RF carpet transport

\[V(t) = V_{DC} + V_{RF} \sin(2\pi \nu_{RF} t) \]

\[E_{\text{eff}} = \frac{1}{2} \frac{m}{q} \frac{\mu_0^2 \rho_0^2 V_{RF}^2}{r_0^3} \]

\(V_{DC} = 180\text{V} \), \(V_{RF} = 150\text{V} \), \(\nu_{RF} = 6\text{MHz} \), \(r_0 = 125\text{\mu m} \), \(\rho = 0.12\text{mg/cm}^3 \)

Optimal density \(\rho \): large for fragment stopping, small for carpet repulsion
Optimal \(U_{DC} \), \(U_{RF} \), \(\nu_{RF} \), \(r_0 \) for best \(\epsilon \) and \(\tau \rightarrow \epsilon > 90\% \) and \(\tau \approx 10\text{ms} \) are obtained
Current developments

Design of the main CSC components:
– target system
– gas recirculation and purification system
– cryogenic system
– electrode system (RF carpets) for ion drift
Design of the main CSC components:
– target system
– gas recirculation and purification system
– cryogenic system
– electrode system (RF carpets) for ion drift

A CSC demonstrator to test these systems:
– visualize and optimize gas flow
– test offline & online ion extraction
Current developments

Design of the main CSC components:
– target system
– gas recirculation and purification system
– cryogenic system
– electrode system (RF carpets) for ion drift

A CSC demonstrator to test these systems:
– visualize and optimize gas flow
– test offline & online ion extraction

CFD + heat transfer simulations (COMSOL)
→ gas jet optimization
Summary

- a two-phased IGISOL RIB facility will be built at ELI-NP

- its main characteristics are expected to be:
 - very low backgrounds (space charge)
 - high extraction efficiency (70-90%) and low extraction time (~25 ms)
 - very high mass selectivity ($\Delta m/m \sim 10^6$): isomeric beams
 - large range of measuring capabilities: mass, $\alpha/\beta/\gamma$ spectroscopy, nuclear moments and radii
 - emphasis on refractory isotopes

- the design of the gas cell is in final stages; a demonstrator cell will be ready next year
Fragment extraction – RF carpet transport

\[V(t) = V_{DC} + V_{RF} \sin(2\pi \nu_{RF} t) \]

\[E_{\text{eff}} = \frac{1}{2} \frac{m}{q} \frac{\mu_0^2 \rho_0^2}{\rho^2} \frac{V_{RF}^2}{r_0^3} \]

\[V_{DC} = 180\text{V} \quad V_{RF} = 150\text{V} \quad \nu_{RF} = 6\text{MHz} \quad r_0 = 125\mu\text{m} \quad \rho = 0.12\text{mg/cm}^3 \]

Optimal density \(\rho \): large for fragment stopping, small for carpet repulsion

Optimal \(U_{DC}, U_{RF}, \nu_{RF}, r_0 \) for best \(\varepsilon \) and \(\tau \rightarrow \varepsilon > 90\% \) and \(\tau \approx 10\text{ms} \) are obtained
Exotic nuclei selection and measurement

- Ions extracted from the CSC are formed into a RIB by the RFQ: cooling, bunching, mass selection (m/Δm~200), CID
- High resolution (m/Δm~10^6) mass selection and measurement by the MR-ToF
- β-decay station: β and γ decays and coincidences
Fragment Stopping in Target (I)

\[S_{\text{ion}} = (\gamma Z)^2 S_p, \quad S_p = \text{proton stopping (Bethe-Bloch)} \]

\[\gamma = q(1+s.c.) = \text{ion effective charge}, \quad q \equiv Q/Z, \quad \text{s.c.} = \text{screening correction (Brant-Kitagawa)} \]

\[q \equiv Q/Z \sim 1 - \exp(-v/v_B^2 Z^{-2/3}) = \text{ion charge state (Bohr approx)} \]

\(\gamma \approx q \approx 1 \) for light ions (\(Z \sim 1 \)), high velocity (\(v >> v_B = 25 \text{ keV/u} \))

Significant for fission fragments: \(Z=30-60, \ KE \sim 0.3-1.5 \text{ MeV/u} \)

q(\(v, Z, Z_{\text{targ}} \)) measurement parameterizations:
1) Ziegler (1988): Geant4
2) Shima (1982): older, specific for slower heavy ions
3) Schiwietz (2001): newest (largest data set), differentiated for solid/gas targets

LOHENGRIN (ILL Grenoble): (\(n_{th}, f \)) of \(^{235}\text{U}, ^{239,241}\text{Pu} \)

\(\langle Q \rangle = 20-22, \sigma_Q = 2.0-2.4 \)

Ziegler: \(\langle Q \rangle = 9.8, \sigma_Q = 3.0 \)

Shima: \(\langle Q \rangle = 16.5, \sigma_Q = 2.0 \)

Schiwietz: \(\langle Q \rangle = 17.3, \sigma_Q = 2.1 \)

Schiwietz&Shima:
- describe better data
- larger ionic charge
- stronger Z dependence
- smaller release efficiency
Release efficiency UF_4