2018 European Nuclear Physics Conference (EuNPC) 4th September, Bologna

Scalar dipole dynamical polarizabilities from proton real Compton scattering data

Stefano Sconfietti in collaboration with Barbara Pasquini & Paolo Pedroni University of Pavia & INFN (Pavia)

WHAT?

Extraction of dipole dynamical polarizabilities (DDPs) from proton RCS data

Outline

WHAT?

Extraction of dipole dynamical polarizabilities (DDPs) from proton RCS data

WHAT? (II)

Response of the nucleon to an external **dynamical** field (photon)

WHAT?

Extraction of dipole dynamical polarizabilities (DDPs) from proton RCS data

WHAT? (II)

Response of the nucleon to an external **dynamical** field (photon)

HOW?

Dispersion Relation approach + data analysis

WHAT?

Extraction of dipole dynamical polarizabilities (DDPs) from proton RCS data

WHAT? (II)

Response of the nucleon to an external **dynamical** field (photon)

HOW?

Dispersion Relation approach + data analysis

WHY?

"...sure, it may give some practical results, but that's not why we do it" - R. P. Feynman

SOME STATISTICS

Gradient method to find the χ^2 minimum

VERY high correlations between parameters!

VERY low sensitivity of the data to dynamical polarizabilities

NO WAY to find the "right" minimum and to define "right" errors on fit parameters

Gradient method to find the χ^2 minimum

VERY high correlations between parameters!

VERY low sensitivity of the data to dynamical polarizabilities

NO WAY to find the "right" minimum and to define "right" errors on fit parameters

Combination of **SIMPLEX** method and **BOOTSTRAP** technique

The DATA set

Symbol	Set	Ref
$ - \ominus - $	GOL 60	Goldansky et al.
⊢⊖	OdL 01	Olmos de León
$\vdash \rightarrow \dashv$	HAL 93	Hallin et al.
├ ── ∎ ──┥	HYM 59	Hyman et al.
<u>⊢_</u>	PUG 67	Pugh et al.
	FED 91	Federspiel et al.
⊢_●	BER 61	Bernardini et al.
▲	BAR 74	Baranov et al.
	OXL 58	Oxley
├── ◆──┤	MAC 95	MacGibbon et al.

3 / 20

The DATA set

Half of the Spartans

that King Leonidas led to the Battle of Thermopylae...

Symbol	Set	Ref
	GOL 60	Goldansky et al.
	OdL 01	Olmos de León
$\vdash \rightarrow \dashv$	HAL 93	Hallin et al.
⊢∎1	HYM 59	Hyman et al.
	PUG 67	Pugh et al.
$\vdash $	FED 91	Federspiel et al.
	BER 61	Bernardini et al.
⊢_▲	BAR 74	Baranov et al.
	OXL 58	Oxley
├ ─ ♦ ──	MAC 95	MacGibbon et al.

18

 $\omega_{\text{lab}} \; (\text{MeV})$

Parametric bootstrap sampling and systematics

$$S_{i,exp}^{boot} = S_{i,exp} \pm \gamma \sigma_{i,exp}$$

Gaussian distributed

Parametric bootstrap sampling and systematics

$$\begin{split} S_{i,exp}^{boot} = S_{i,exp} \pm \gamma \, \sigma_{i,exp} & \text{Gaussian distributed} \\ \text{How can we include systematical errors?} \\ \chi_{mod}^2 = \sum_{i=1}^{N_{tot}} \left[\frac{\mathcal{N}\mathcal{S}_{i,exp} - \mathcal{S}_{i,theory}}{\mathcal{N}\sigma_{i,exp}} \right]^2 + \left(\frac{\mathcal{N}-1}{\sigma_{i,sys}} \right)^2 \end{split}$$

...one normalization factor per data set is needed!

Parametric bootstrap sampling and systematics

$$S_{i,exp}^{boot} = S_{i,exp} \pm \gamma \sigma_{i,exp}$$
 Gaussian distributed
How can we include systematical errors?
$$\chi_{mod}^{2} = \sum_{i=1}^{N_{tot}} \left[\frac{\mathcal{NS}_{i,exp} - \mathcal{S}_{i,theory}}{\mathcal{N}\sigma_{i,exp}} \right]^{2} + \left(\frac{\mathcal{N} - 1}{\sigma_{i,sys}} \right)^{2}$$

...one normalization factor per data set is needed!

$$S_{i,exp}^{boot} = \xi [S_{i,exp} \pm \gamma \sigma_{i,exp}]$$

At every bootstrap cycle the systematical errors for each set can vary independently!

The effect of systematics (static & spinindependent polarizabilities)

Expected Gaussian shape + systematics enlarging

"χ²" probability distribution in bootstrap framework (static pol.)

"χ²" probability distribution in bootstrap framework (static pol.)

DIPOLE STATIC POLARIZABILITIES

DRs VS (LEX + multipoles)

7 / 20

DRs VS (LEX + multipoles): fit

FIRST cross check: comparison with LEX + multipoles and full DRs

DRs VS (LEX + multipoles): fit

Bootstrap VS gradient: systematics ON

	$\boldsymbol{\alpha}_{\mathtt{E1}}$	β _{Μ1}
BOOTSTRAP	11.8 ± 0.2	2.0 ± 0.2
LEX + MULTIPOLES	11.8 ± 0.2	2.0 ± 0.2
BOOTSTRAP SYS ON	11.8 ± 0.3	2.0 ± 0.3

Bootstrap VS gradient: systematics ON

	$\boldsymbol{\alpha}_{\mathtt{E1}}$	β _{Μ1}
BOOTSTRAP	11.8 ± 0.2	2.0 ± 0.2
LEX + MULTIPOLES	11.8 ± 0.2	2.0 ± 0.2
BOOTSTRAP SYS ON	11.8 ± 0.3	2.0 ± 0.3

Systematical errors enlarge the error band of polarizabilities!

Summary plot

Unpolarized differential cross section: sensitivity plots

11 / 20

Static fit: γ_{π} free parameter

$2 \cdot 10^{-4} \, fm^3 \qquad 8 \cdot 10^{-4} \, fm^4 \qquad 12 \cdot 10^{-4} \, fm^3$

Static fit: γ_{π} free parameter

 $2 \cdot 10^{-4} \, fm^3 \qquad 8 \cdot 10^{-4} \, fm^4 \qquad 12 \cdot 10^{-4} \, fm^3$

Central values and uncertainties are almost the same!

DIPOLE DYNAMICAL POLARIZABILITIES

- ✓ Baldin's sum rule
- ✓ Systematical errors ON
- FULL data set (150 data)
- TAPS data set (55 data)
- Frrors on Baldin's sum rule and γ_{n} included in the procedure

Fit conditions

- ✓ Baldin's sum rule
- ✓ Systematical errors ON
- 🖌 FULL data set (150 data)
- ✓ TAPS data set (55 data)
- Frrors on Baldin's sum rule and γ_{Π} included in the procedure

DDPs from the fit

DDPs from the fit

DDPs from the fit: probability distributions

DDPs from the fit: probability distributions

distributions given by our technique (**not** assumed a priori)

		FULL	TAPS
α_{E1}	(10^{-4}fm^3)	13.3 ± 0.8	11.6 ± 1.1
$\alpha_{E1,\nu}$	$(10^{-4} {\rm fm}^5)$	-8.8 ± 2.5	-3.2 ± 3.1
β_{M1}	(10^{-4}fm^3)	0.4 ∓ 0.9	2.2 ∓ 1.1
$\beta_{M1,\nu}$	(10^{-4}fm^5)	10.8 ± 2.8	5.1 ± 3.7

Very STRONG dependence on data set (maybe due to different angular regions...)

		FULL	TAPS
α_{E1}	(10^{-4}fm^3)	13.3 ± 0.8	11.6 ± 1.1
$\alpha_{E1,\nu}$	$(10^{-4} {\rm fm}^5)$	-8.8 ± 2.5	-3.2 ± 3.1
β_{M1}	$(10^{-4} {\rm fm}^3)$	0.4 ∓ 0.9	2.2 ∓ 1.1
$\beta_{M1,\nu}$	(10^{-4}fm^5)	10.8 ± 2.8	5.1 ± 3.7

Very STRONG dependence on data set (maybe due to different angular regions...)

> Very HIGH correlations among parameters

Global results: $\alpha_{E1} \& \beta_{M1}$

17 / 20

PDG: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update ChPt: V. Lensky, J. McGovern, and V. Pascalutsa, Eur. Phys. J. C75, 604 (2015) B. Pasquini, P. Pedroni, S. Sconfietti, Phys. Rev. C 98, 015204 (2018)

Global results: $\alpha_{E1,v} \& \beta_{M1,v}$

DRs (I): B. R. Holstein, D. Drechsel, B. Pasquini, M. Vanderhaeghen. Phys.Rev. C61 (2000) 034316 DRs (II): B. Pasquini, D. Drechsel, M. Vanderhaeghen. Phys.Rev. C76 (2007) 015203 ChPt: V. Lensky, J. McGovern, and V. Pascalutsa, Eur. Phys. J. C75, 604 (2015) B. Pasquini, P. Pedroni, S. Sconfietti, Phys. Rev. C 98, 015204 (2018)

Problems with the data set (what we could do)

Very strong dependence of polarizabilities on the specific data set!

Outliers \rightarrow rescaling of all the statistic uncertainties by a factor

$$\sqrt{\chi^2}$$

Problems with the data set (what we could do)

Very strong dependence of polarizabilities on the specific data set!

Outliers \rightarrow rescaling of all the statistic uncertainties by a factor

Effect: enlarging of errors on fitted parameters (~20%)

O. Behnke, K. Kröninger, G. Schott and T. Schörner-Sadenius, *Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods*, Wiley-VCH, 2013 N. Krupina, V. Lensky, V. Pascalutsa, Phys.Lett. B782 (2018) 34 Very useful and versatile technique for data analysis

Effect of systematic sources of uncertainties on the fitted parameters

Waiting for new data in order to reduce the uncertainties of the fitted parameters (MAMI)

Very useful and versatile technique for data analysis

Effect of systematic sources of uncertainties on the fitted parameters

Waiting for new data in order to reduce the uncertainties of the fitted parameters (MAMI)

DDPs without LEX (double subtraction in DRs)

Fit of polarized observables in RCS with the same technique

Thank you!

DINNER TIME AUDIENCE STILL HERE

Backup slides

Dispersion relations and RCS (I)

SUBTRACTED DISPERSION RELATIONS

B. Pasquini , D. Drechsel M. Vanderhaeghen, Phys.Rev. C76 (2007) 015203 B. Pasquini, M. Vanderhaeghen, Ann.Rev.Nucl.Part.Sci. 68 (2018) 75-103

Dispersion relations and RCS (II)

Subtracted Dispersion Relations (s-channel)

- D. Drechsel, M. Gorchtein, B. Pasquini, M. Vanderhaeghen, Phys.Rev. C61 (1999) 015204
- B. Pasquini , D. Drechsel M. Vanderhaeghen, Phys.Rev. C76 (2007) 015203
- B. Pasquini, M. Vanderhaeghen, Ann.Rev.Nucl.Part.Sci. 68 (2018) 75-103

Multipoles expansion and DYNAMICAL polarizabilities

$$R_1 = \sum_{l \ge 1} \{ [(l+1)f_{EE}^{l+} + lf_{EE}^{l-}](lP_l' + P_{l-1}'') - [(l+1)f_{MM}^{l+} + lf_{MM}^{l-}]P_l'' \}$$

$$R_2 = \sum_{l \ge 1} \left\{ [(l+1)f_{MM}^{l+} + lf_{MM}^{l-}](lP_l' + P_{l-1}'') - [(l+1)f_{EE}^{l+} + lf_{EE}^{l-}]P_l'' \right\}$$

DYNAMICAL POLARIZABILITIES

$$\alpha_{El} = a(l) \frac{(l+1)f_{EE}^{l+} + lf_{EE}^{l-}}{\omega^{2l}} \quad \beta_{Ml} = a(l) \frac{(l+1)f_{MM}^{l+} + lf_{MM}^{l-}}{\omega^{2l}}$$

DIPOLE DYNAMICAL POLARIZABILITIES (DDPs) $\alpha_{E1}(\omega)$ $\beta_{M1}(\omega)$

LEX is *very* low ...

LEX + residual functions

$$DDP(\omega) = DDP_{LEX}(\omega) + f_{R}(\omega)$$

Strong correlation between parameters

Reduction of parameters number thanks to sum rules

Identifications of the *outliers* (rescaling for statistic errors?)

The χ^2 is not the only *quality indicator* \rightarrow no "definition" of data set

Waiting for new data (MAMI)

Differential cross section

$d\sigma/d\Omega$ VS lab energy

100% error band from the bootstrap fit

TAPS vs FULL data set

VERY small difference both in calculation and in error band

VIII

χ^2 curvature close to its minimum

