Nuclear data program for NCT at the n_TOF Collaboration at CERN

M. Sabaté-Gilarte^{1,2}, <u>F. Ogállar^{2,3}</u>, J. Praena³, I. Porras³, P. Torres-Sánchez³, J.M. Quesada¹ and The n_TOF Collaboration⁴.

University of Seville (Spain)
 CERN (Switzerland)
 University of Granada (Spain)
 www.cern.ch/ntof

1. A stable isotope is injected into the patient, accumulating in cancer cells: typically ¹⁰B.

2. Tumour region is irradiated with neutrons, inducing (\mathbf{n}, α) reaction in ¹⁰B.

- Neutrons are moderated in tissue and arrive to the tumour with thermal energy, maximizing the reaction probability.
- Energy deposition range $(5-9 \ \mu m) \sim cell size.$
- One day of treatment.

A **neutron beam** is necessary to perform the treatment:

- **Nuclear reactors**: has been the only way for a long time, limiting the therapy potential:
 - 1. Logistic problems.
 - 2. Not optimized neutron beam.
- Accelerator-Based neutron sources for NCT:
 - 1. Open the possibility to implement this therapy in hospitals.
 - 2. Development in Russia, Italy, UK, Israel, Japan or Argentina.
 - 3. From reactor beams to more versatile and safety AB-BNCT beams.

Exploring other possible compounds besides ¹⁰B. Requirements:

- High (n, lcp) cross section.
- lcp with high LET (Linear Energy Transfer).
- Range of the lcp in the order of the tumour cells.

Better therapeutic outcome by increasing the delivered dose to the tumour.

MANCHESTER

- High (n, lcp) cross section.
- lcp with high LET (Linear Energy Transfer).
- Range of the lcp in the order of the tumour cells.

³³S in AB-BNCT:

- Proposed in 2008 as possible cooperative target to ¹⁰B.
- ³³S stable isotope of sulphur (0.75%).
- $^{33}S(n, \alpha)$ most probable neutron-induced reaction channel: $Q \approx 3.5 \text{ MeV}$
- Resonance region above 10 keV with higher cross section than ${}^{10}B(n, \alpha)$.

³³S(n,α): Nuclear data status

To perform the dose calculations and investigate further the potentials of 33 S, we need the reaction **cross section**.

- The results of Wageman *et al.*, (n,a), and Coddens *et al.*, transmission, measurements show discrepancies in the Γ_{α} . For the first resonance it is of a factor 2.
- No experimental data from thermal to 10 keV. Low energy resonances (< 10 keV) may exist in view of the work performed for the reverse reaction.

n_TOF experiment at CERN

 $20 \ GeV$ protons EAR2 (2014) Greater Neutron Flux

> **EAR1** (2001) Better energy resolution

CERN

MANCHESTER 1824

Spallation Target

4 gaseous detectors: µMGAS:
Back-to-back configuration:

- Det 1: 20 nm ${}^{10}B_4C$ onto Mylar.
- Det 2: 2.59e-7 atm/barn ³³S.
- Det 3: blank (³³S backing).
- Det 4: 3.76e-7 atm/barn ³³S.

Spokespersons:

- J. Praena (UGR, Spain)
- I. Porras (UGR)

Data analysis:

• M. Sabaté-Gilarte (CERN and US, Spain)

Thermal point: 25.3 meV

year	Author	$\sigma ~({\rm mbarn})$
1958	F. Muennich	180 ± 80
1965	J. Benisz	151 ± 22
1978	M. Asghar	140 ± 30
2006	S.F. Mughabghab	115 ± 10
2016	This work	150 ± 15

³³S(n, α) in n_TOF: results EAR1

MANCHESTER

Neutron Energy (keV)

$\overline{E_n \qquad J^{\pi a}}$ (keV)		Γ_{γ}^{b} (eV)	Γ_n^c (eV)	Γ _α (eV)			$g\Gamma_{\pi}\Gamma_{\alpha}/\Gamma$ (eV)		
				n_TOF	ORNL	Geel	n_TOF	ORNL	Geel
13.45	2+	0.25 ± 0.05	75±1	100 ± 5	83±3	41±5	27.0 ± 0.4	24.6 ± 0.5	16.4 ± 1.1
23.95	3-	1.45 ± 0.10	16.0 ± 0.9	2.2 ± 0.4		2.5 ± 0.3	1.57 ± 0.09		1.86 ± 0.16
52.12	2+	0.25 ± 0.05	349 ± 6			18 ± 2			10.5 ± 1.2
53.60	3-	1.6 ± 0.3	68 ± 3	320 ± 10	120 ± 11	83 ± 13	47±3	38 ± 2	32.6 ± 2.0
70.86	1-	0.68 ± 0.15	65 ± 10	580 ± 20	170 ± 50	107 ± 63	22 ± 4	18 ± 3	15.1 ± 1.9
81.36	2+	0.95 ± 0.06	705 ± 19			4±2			2.5 ± 1.2
84.88	1-	0.8 ± 0.09	720 ± 25^{d}	4500 ± 100	3900 ± 300	3970 ± 600	232 ± 8	370 ± 20	374 ± 24
87.63	1-	2.14 ± 0.14	28±5 d	1 ± 0.2		10 ± 5	0.34 ± 0.06		3.6 ± 1.8
127.66	1-	1.7 ± 0.4	360 ± 40	950 ± 110	520 ± 120	127 ± 60	98 ± 11	80 ± 11	58 ± 6
203.32	3-	2.2 ± 0.2	2090 ± 42	5 ± 2		14 ± 5	4.4 ± 0.09		12 ± 4
221.38	2+	1.4 ± 0.4	690 ± 70	140 ± 14	280 ± 100	55 ± 20	73 ± 8	120 ± 30	32 ± 14
223.17	0+	0.68 ± 0.12	4400 ± 900			900 ± 300			93 ± 25
228.73	3-	0.84 ± 0.13	760 ± 50	230 ± 30	230 ± 60	203 ± 27	150 ± 11	150 ± 30	140 ± 14
295.95	2+	2.2 ± 0.15	$2090\pm\!100$	15 ± 5	—	—	9.3 ± 0.5	—	42 ± 10

^aDetermined by ORNL except 295.95 keV, which is tentative (see text for details).

^bDetermined by ORNL from the (n, γ) data of Auchampaugh et al. [9].

^cDetermined by ORNL except where it is indicated (see text for details).

 ${}^{d}\Gamma_{n}$ ORNL values: 1330 \pm 80 eV for 84.88 keV and 280 \pm 20 eV for 87.63 keV.

$^{33}S(n,\alpha)$ in n_TOF: results EAR1

MANCHESTE

J. Praena et al.,

Measurement and resonance analysis of the ${}^{33}S(n,a){}^{30}Si$ cross section at the CERN n_TOF facility in the energy region from 10 to 300 keV Phys. Rev. C 97, 064603 (2018)

13.45	2+	0.25 ± 0.05	75±1	100 ± 5	83±3	41±5	27.0 ± 0.4	24.6 ± 0.5	16.4 ± 1.1
23.95	3-	1.45 ± 0.10	16.0 ± 0.9	2.2 ± 0.4		2.5 ± 0.3	1.57 ± 0.09		1.86 ± 0.16
52.12	2+	0.25 ± 0.05	349 ± 6			18 ± 2			10.5 ± 1.2
53.60	3-	1.6 ± 0.3	68±3	320 ± 10	120 ± 11	83 ± 13	47±3	38 ± 2	32.6 ± 2.0
70.86	1-	0.68 ± 0.15	65 ± 10	580 ± 20	170 ± 50	107 ± 63	22 ± 4	18 ± 3	15.1 ± 1.9
81.36	2+	0.95 ± 0.06	705 ± 19			4±2			2.5 ± 1.2
84.88	1-	0.8 ± 0.09	720 ± 25^{d}	4500 ± 100	3900 ± 300	3970 ± 600	232 ± 8	370 ± 20	374 ± 24
87.63	1-	2.14 ± 0.14	28±5 d	1 ± 0.2		10 ± 5	0.34 ± 0.06		3.6 ± 1.8
127.66	1-	1.7 ± 0.4	360 ± 40	950 ± 110	520 ± 120	127 ± 60	98 ± 11	80 ± 11	58 ± 6
203.32	3-	2.2 ± 0.2	2090 ± 42	5 ± 2		14 ± 5	4.4 ± 0.09		12 ± 4
221.38	2+	1.4 ± 0.4	690 ± 70	140 ± 14	280 ± 100	55 ± 20	73 ± 8	120 ± 30	32 ± 14
223.17	0+	0.68 ± 0.12	4400 ± 900			900 ± 300			93 ± 25
228.73	3-	0.84 ± 0.13	760 ± 50	230 ± 30	230 ± 60	203 ± 27	150 ± 11	150 ± 30	140 ± 14
295.95	2+	2.2 ± 0.15	$2090\pm\!100$	15 ± 5	—	—	9.3 ± 0.5	—	42 ± 10

^aDetermined by ORNL except 295.95 keV, which is tentative (see text for details).

^bDetermined by ORNL from the (n, γ) data of Auchampaugh et al. [9].

^cDetermined by ORNL except where it is indicated (see text for details).

 ${}^{d}\Gamma_{n}$ ORNL values: 1330 ± 80 eV for 84.88 keV and 280 ± 20 eV for 87.63 keV.

10

Exploring other possible compounds besides ¹⁰B. Requirements:

- High (n, lcp) cross section.
- lcp with high LET (Linear Energy Transfer).
- Range of the lcp in the order of the tumour cells.

Improve the treatment by increasing the delivered dose to the tumour.

Distance from the skin surface (cm)

Figure 14 SERA (line) and JCDS (symbol) calculations for the total depth distributions in brain and tumor for the anterior field, using a 14 cm diameter circular FiR 1 beam. The boron dose (D_B) was calculated for 19 mg/g (ppm) of ¹⁰B in brain and 66.5 µg/g (ppm) ¹⁰B in tumor.

The effect of neutrons in healthy tissue is much lower than in tumour ¹⁰B-load; however, the dose in healthy tissue is the limiting factor in whatever radiotherapy treatment. Increasing neutron irradation.

MANCHESTE

Because of uncertainties, a large safe margin is applied for treatment planning.

With more precise dose calculations, we could control better the delivered dose to the different tissues, optimizing the treatment.

More precise dose calculations require a better knowledge of the cross section of the neutron-induced reactions. **Kerma factor** is a magnitude used in dosimetry which takes into account the concentration of each isotope and the cross-section: $K \propto N \sigma$

- The contribution of ${}^{14}N(n,p)$ is the Due to the resonances in ${}^{35}Cl(n,p)$, most important for E_n below 50 keV.
 - this reactions has bigger effect than ¹⁶O and ¹²C for epithermal neutrons.

¹⁴N(n,p): status of the data

Wallner *et al.*, Gledenov *et al.* and Shima *et al.* in agreement with Koehler and JEFF-3.2. **Cross section (barn)**

Morgan measured 493-keV **resonance** with a strength lower than Johnson. Wallner *et al.* shows a further reduction of Morgan in a factor 3.3. Koehler (1993) reached near thermal value. Wagemans (2001) measured the **thermal** cross-section finding >10% differences, they mentioned the need of a "careful new evaluation".

MANCHESTE

Incident neutron energy (MeV)

ENDF Request 30973, 2017-Apr-03,04:35:48 EXFOR Request: 28559/1, 2017-Apr-03 04:34:20

MANCHESTEI

Evaluations are based on Koehler at thermal, in the energy range below 398-keV and in the resonances it is based in Druyts.

Thermal value in the evaluation is 483 mb while Druyts *et al.* measured 440 mb and Gledenov *et al.* obtained 575 mb.

¹⁴N(n,p) & ³⁵Cl(n,p) at n_TOF EAR2: 2017

MANCHESTER

DSSSD, allows understanding possible anisotropies in the angular distribution of the reaction.

¹⁴N(n,p) & ³⁵Cl (n,p): ultra preliminary analysis

TOF

NCT: ${}^{35}Cl(n,\gamma)$ in healthy tissue dosimetry

- Cl is present in brain and in skin at 0.3%.
- From Monte Carlo simulations we obtained that it is important for dose calculations in **healthy tissue**

17-CL-0(N,G) EXFOR Request: 315/1, 2018-Feb-06 19:12:14

- Only one capture measurement in resonances region:
 K. H. Guber, R. O. Sayer, T. E. Valentine, et al, *Phys. Rev. C* 65, 058801 (2002)
- Discrepances in the measurements at **thermal point**.

Spokespersons: I. Porras (UGR) T. Wright (UMAN, UK)

4 x **C6D6** detectors, widely used for capture measurements in n_TOF.

- 1 sample of Nat-Cl
- 1 simple of ³⁵Cl

The data analysis is still to be done.

Courtesy of Samuel Bennett (UMAN)

- □ NCT face a new era due to the development of accelerator-bassed NCT beams. Treatments can be improved from different perspectives:
 - Alternative and cooperative isotopes.
 - More accurate **dosimetry calculations**, including new contributions.

- Neutron-induced cross section measurements
- More effective chemical compounds to load tumour cells with ¹⁰B.
- Improve the knowledge of biological factors.
- Etc.

n_TOF: was the ideal facility to perform our neutron-induced cross section measurements:

- ³³S(n,α): analysis finalished and partially published. Potential of enhancing the delivered dose to superficial tumours
- ¹⁴N(n,p), ³⁵Cl(n,p) and ³⁵Cl(n,y): analysis is in process. Results will be used to perform more accurate dosimetry calculations. This will ideally allow the NCT community to plan treatments capable of increasing the dose delivered to tumours, improving the chances of survival.

Nuclear data program for NCT at the n_TOF Collaboration at CERN

M. Sabaté-Gilarte^{1,2}, <u>F. Ogállar^{2,3}</u>, J. Praena³, I. Porras³, P. Torres-Sánchez³, J.M. Quesada¹ and The n_TOF Collaboration⁴.

University of Seville (Spain)
 CERN (Switzerland)
 University of Granada (Spain)
 www.cern.ch/ntof

Importance of BNCT

Nuclear Physics European Collaboration Committee (NuPECC)
Nuclear Physics for Medicine

Chapter I Hadrontherapy

Conveners: Marco Durante (GSI) - Sydney Galès (Orsay, FAIR, ELI)

Facilities in operation and planned 2.1 Historical development of hadron radiotherapy facilities Accelerators 3.1 Introduction	14	2.2 Proton and carbon ion facilities in operation 2.3 Future facilities	14 15
2.1 Historical development of hadron radiotherapy facilities . Accelerators 3.1 Introduction	14	2.2 Proton and carbon ion facilities in operation 2.3 Future facilities	15
radiotherapy facilities Accelerators S.1 Introduction	14	2.3 Future facilities	1
3. Accelerators 3.1 Introduction	18		15
3.1 Introduction	18		18
		3.5 Cyclotrons and synchrotrons:	
3.2 Historical development	18	advantages and disadvantages	21
3.3 Microbeams	19	3.6 Current status	22
3.4 Beam features for a hadrontherapy centre	19	3.7 Future	22
. Beam delivery			24
4.1 Principle and interfacing	24	4.5 Beam delivery performances	26
4.2 From the appelerator to the treatment room	15 24	4.6 Other considerations	26
4.3 Beamline orientation in the treatment room	15 24	4.7 Perspectives and challenges	25
4.4 Beam delivery methods	25		
. Dosimetry			27
5.1 Introduction	27	5.3 B5D	25
5.2 Dosimetry tools for hadron radiotherapy	27		
Moving targets			30
6.1 Introduction	30	6.4 Motion mitigation strategies	
6.1 Introduction 6.2 Imaging moving organizer		E.S. Summou	
6.3 Motion detection	31	old contrary	
Badiology			33
71 Introduction	-	7.4 Uppedractionation	-
7.2 BBE	33	7.5 Combined therapies	1
7.3 Cancer stem cells	34		
Modelling			37
B.1. Introduction	37	B & Ersementalian	-
8.2 Monte Carlo modelling in hadrontherany	37	8.5 Simulations of PET images	- 20
8.3 Secondary neutrons	38	8.6 Summary	40
Treatment planning			
9.1 Introduction	41	9.3 Quality assurance aspects	10
9.2 The treatment planning process	41	9.4 Current developments	44
0 Boron neutron canture therapy			48
10.1 Introduction	46	10.4 Accelerator-based neutron sources	4
10.2 BNCT in clinical practice	46	10.5 Therapeutic neutron beams	50
10.3 BNCT physics	48	10.8 Conclusions	50
1. Clinical programme update in particle there	PY		53
11.1 Introduction	53	11.3 Development of carbon lons indications	54
11.2 Proton therapy indications	53	11.4 Perspectives	54
2 Outlook			58

BNCT: unique RT option for infiltrative tumours

BNCT: survival curves

MANCHESTER

Figure 10.2. Left side, Kaplan–Meier plot of the overall survival for all newly diagnosed glioblastoma treated and not treated with BNCT [from Kawabata *et al.* (2009). Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. *Appl. Radiat. Isot.* 67: S15-18]. Right side, Kaplan–Meier survival plots of patients with recurrent head and neck cancer treated with and without BNCT [from Kato *et al.* (2009). Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies. *Appl. Radiat. Isot.* 67: S37-42].

Adjusting delivered dose may improve outcome

The n_TOF facility at CERN

- Nominal proton intensity: $7x10^{12}$ p/pulse
- Proton pulse width: 7 ns (r.m.s.)
- Low repetition rate: < 0.8 Hz
- Wide energy spectrum: < 25 meV to 1 GeV
- Neutrons per proton: 300
- High instantaneous flux: 10⁵-10⁷ n/cm²/pulse

The n_TOF beam lines

EAR1

- In operation since 2001.
- Horizontal beam line located at 185 m downstream from the spallation target.
- High energy resolution allowing to resolve resonances in the keV-MeV neutron energy range.
- Measuring neutron capture and neutron-induced fission cross-sections of interest in nuclear technology and astrophysics for more than 10 years.

EAR2

• In operation since 2014.

- Vertical beam line above the ground placed at 19.5 m from the target.
- Running in parallel with EAR1.
- Neutron fluence increased by a factor 40 on average.
- Optimized to measure small samples (<1mg) as well as radioactive isotopes with very short half-lifes.
- Low cross section measurements.
- Shorter time scale measurement.

•TOF determination:

- t : arrival time of the signal to the detection system
- \boldsymbol{t}_{γ} : time of the γ -flash
- *L* : geometrical distance between the detection system and the spallation target
- **c** : the speed of light

Program of measures since 2001

ENDF: Use **bound state** to fit the thermal value of Mughabghab. -75 eV to -180 eV reported from different authors. Different possibilities for low energy behaviou:

	Dose ³⁵ Cl (n,y)	%Dose ³⁵ Cl(n,y)	Total Dose
Upper bound	0.516	12.446	4.1830
ENDF/B-VII	0.514	12.410	4.1439
Estimation 1	0.551	13.196	4.1421
Estimation 2	0.325	8.167	3.9803
Lower bound	0.081	2.162	3.7660

Ŷ

CERN

