Recent results on charmed meson decays @ BESIII

Xinyu Shan

(On behalf of BESIII Collaboration)

University of Science and Technology of China (USTC)

6th Sep, 2018, Bologna, Italy

Outline

Introduction

- BESIII Experiment
- Charmed Meson Data Set and Analysis Method
- (Semi-)Leptonic Decays
 - Leptonic Decays: $D^+ \rightarrow \tau^+ \nu_{\tau}$, $D^+_s \rightarrow \mu^+ \nu_{\mu}$
 - Semi-leptonic Decays: $D^0 \to K^- \mu^+ \nu_\mu$, $D^{0(+)} \to \pi^{-(0)} \mu^+ \nu_\mu$, $D_s^+ \to K^{(*)0} e^+ \nu_e$, $D_s^+ \to \eta^{(\prime)} e^+ \nu_e$, $D \to a_0(980) e^+ \nu_e$

Hadronic Decays

- Study of the Decay: $D_s^+ \rightarrow p\bar{n}$
- Study of the Decays: $D_s^+ \to \omega \pi^+$, $D_s^+ \to \omega K^+$
- Amplitude Analysis: $D_s^+ \to \pi^+\pi^-\eta$, $D^0 \to K^-\pi^+\pi^0\pi^0$
- Rare decays
 - Search for the FCNC Decays: $D \rightarrow h(h^{(\prime)})e^+e^-$
- Summary

Introduction: BESIII Experiment

Nucl. Instr. Meth. A614, 345(2010)

LINAC

Beam energy: 1.0-2.3 GeV

Optimum energy: 1.89 GeV

Data taking from: 2009

Design luminosity: 1.00×10³³ cm⁻²s⁻¹

Achieved luminosity: 1.00×10³³ cm⁻²s⁻¹

Charmed Data Set and Analysis Method

Data Set Used in this talk:

- 2.93fb⁻¹@E_{cm} = 3.773GeV (~3.5x CLEO-c) $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$
- $3.19 \text{fb}^{-1} @E_{cm} = 4.178 \text{GeV} (\sim 5.3 \text{x CLEO-c})$ $e^+e^- \rightarrow D_s^{\pm} D_s^{*\mp} \rightarrow \gamma/\pi^0 D_s^+ D_s^-$

Analysis method (pair production):

- Single tag(ST): reconstruct only one of $D\overline{D}$
- Double tag(DT): reconstruct both of $D\overline{D}$
- Calculate absolute BFs: $B = \frac{N_{DT}}{N_{ST} \cdot \epsilon_{DT} / \epsilon_{ST}}$
- Advantages:
 - Absolute branching fraction measurement
 - Full kinematic constraint to reconstruct ν or neutral hadron(i.e. KL , n)
 - Low background

(Semi-)Leptonic Decay: Motivation

$$\Gamma(D^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D^+}^2}{8\pi} |V_{cd}|^2 m_\ell^2 m_{D^+} \left(1 - \frac{m_\ell^2}{m_{D^+}^2}\right)^2 \qquad \qquad \frac{d\Gamma_{P\ell^+ \nu_\ell}}{dq^2} = \frac{G_F^2 |V_{cq}|^2}{8\pi^3 m_D} |\vec{p}_P| |f_+^P(q^2)|^2 \left(\frac{W_0 - E_P}{F_0}\right)^2 \times \left[\frac{1}{3}m_D |\vec{p}_P|^2 + \mathcal{O}(m_\ell^2)\right] \\ W_0 = (m_D^2 + m_P^2 - m_\ell^2)/2m_D, \ F_0 = W_0 - E_P + m_\ell^2/2m_D$$

- Measure $|V_{cd(s)}|$ to test the unitary of CKM matrix
- Measure the form factor $f_{D(s)^+}$, $f_+^P(0)$ to calibrate the LQCD
- Test Lepton flavor universality in charmed meson decay

Leptonic Decay: $D^+ \to \tau^+ (\to \pi^+ \bar{\nu}_{\tau}) \nu_{\tau}$

UL by CLEO: <1. 2 \times 10^{-3} @ 90% C.L.

BESIII Preliminary:

- $B(D^+ \to \tau^+ \nu_{\tau}) = (1.20 \pm 0.24_{\text{stat.}}) \times 10^{-3}$
- Significance > 4σ

Test lepton flavor universality:

•
$$R = \frac{\Gamma(D^+ \to \tau^+ \nu_{\tau})}{\Gamma(D^+ \to \mu^+ \nu_{\mu})} = 2.66 \pm 0.01 \text{ (SM)}$$

•
$$R = \frac{B(D^+ \to \tau^+ \nu_{\tau})[BESIII Preliminary]}{B(D^+ \to \mu^+ \nu_{\mu}) [PRD89,051104(R)(2014)]}$$

= 3.21 ± 0.64

Consistent in 1σ

Leptonic Decay: $D_s^+ \rightarrow \mu^+ \nu_{\mu}$

Semi-Leptonic Decay: $D^0 \rightarrow K^- \mu^+ \nu_\mu$

Semi-Leptonic Decay : $D^0 \rightarrow K^- \mu^+ \nu_{\mu}$

Test lepton flavor universality:

- In the full q² interval: $R_{\mu/e} = \frac{\Gamma(D^+ \to K^- \mu^+ \nu_\mu)}{\Gamma(D^+ \to K^- e^+ \nu_e)[PRD92,072012(2015)]} = 0.978 \pm 0.007 \pm 0.012$
- No deviation larger than 2σ over q^2 interval in this analysis

Semi-leptonic Decay: $D \rightarrow \pi \mu^+ \nu_{\mu}$ [arXiv: 1802.05492]

Measurement Results:

- $B(D^0 \to \pi^- \mu^+ \nu_\mu) = (0.267 \pm 0.007 \pm 0.007)\%$
- $B(D^+ \to \pi^0 \mu^+ \nu_{\mu}) = (0.342 \pm 0.011 \pm 0.010)\%$ (first measurement)

•
$$R_{\mu/e}^{D^0} = \frac{B_{\mu}^{D^0}[arXiv:1802.05492]}{B_{e}^{D^0}[PRD 92, 072012(2015)]} = 0.905 \pm 0.027 \pm 0.023$$

• $R_{\mu/e}^{D^+} = \frac{B_{\mu}^{D^+}[arXiv:1802.05492]}{B_{e}^{D^+}[PRD 96, 012002(2017)]} = 0.942 \pm 0.037 \pm 0.027$

•
$$R_{IS}^{\mu} = \frac{\Gamma(D^0 \to \pi^- \mu^+ \nu_{\mu})}{2\Gamma(D^+ \to \pi^0 \mu^+ \nu_{\mu})} = \frac{\tau_{D^+} B(D^0 \to \pi^- \mu^+ \nu_{\mu})}{2\tau_{D^0} B(D^+ \to \pi^0 \mu^+ \nu_{\mu})} = 0.990 \pm 0.041 \pm 0.035$$

 $R_{\mu/e}^{D^{0(+)}}$ coincides with SM prediction 0.97 within 1.9(0.6) σ

• R_{IS}^{μ} is consistent with no isospin violation and the value of electronic decay R_{IS}^{e} [PRD 96, 012002(2017)]

Semi-leptonic Decay: $D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$

Partial decay rates are ٠ fitted simultaneously by two η/η' subdecays

0.74±0.14

Based on the result extracted with the series 2 Parameters, we determine $|V_{cs}|$ and $f_{\perp}^{\eta^{(\prime)}}$ (0)

		BESIII Preliminary				Nominal result			
Case	Simple pole			Modified pole			Series 2 Par.		
	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	$M_{\rm pole}$	$\chi^2/{\rm NDOF}$	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	α	χ^2/NDOF	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	r_1	χ^2/NDOF
$\eta e^+ \nu_e$	0.450(5)(3)	3.77(8)(5)	12.2/14	0.445(5)(3)	0.30(4)(3)	11.4/14	0.446(5)(4)	-2.2(2)(1)	11.5/14
$\eta' e^+ \nu_e$	0.494(45)(10)	1.88(54)(5)	1.8/4	0.481(44)(10)	1.62(91)(11)	1.8/4	0.477(49)(11)	-13.1(76)(11)	1.9/4

PDG2017

EuNPC2018

Semi-leptonic Decay: $D_s^+ \rightarrow K^{(*)0}e^+\nu_e$

Fit to MM2

Br[D_s⁺→K⁰e⁺v_e] = (3.25±0.38_{stat}±0.14_{syst})×10⁻³ (3.9±0.9)×10⁻³ [PDG2017] Br[D_s⁺→K^{*0}e⁺v_e]=(2.38±0.26_{stat}±0.12_{syst})×10⁻³ (1.8±0.4)×10⁻³ [PDG2017]

 $D_s^+ \to K^0 e^+ \nu_e$ Fits to partial decay rates

Model	Parameter	Value	$f_{+}(0)$
Simple pole	$f_{+}(0) V_{cd} $	$0.175 \pm 0.010 \pm 0.001$	$0.778 \pm 0.044 \pm 0.004$
Modified pole model	$f_+(0) V_{cd} $	$\begin{array}{c} 0.163 \pm 0.017 \pm 0.003 \\ 0.45 \pm 0.44 \pm 0.02 \end{array}$	$0.725 \pm 0.076 \pm 0.013$
Series two parameters	$\frac{f_+(0) V_{cd} }{r_1}$	$\begin{array}{c} 0.162 \pm 0.019 \pm 0.003 \\ -2.94 \pm 2.32 \pm 0.14 \end{array}$	$0.720 \pm 0.084 \pm 0.013$

 $D_s^+ \to K^{*0} e^+ \nu_e$ Four dimensional un-binned likelihood fit

 $r_V = 1.67 \pm 0.34 \pm 0.16$ $r_2 = 0.77 \pm 0.28 \pm 0.07$ (Details of definition in back-up)

Semi-leptonic Decay: $D \rightarrow a_0(980)e^+\nu_e$ [PRL 121, 081802(2018)]

Explore the internal structure of light hadron mesons, traditional two quark states or tetra quark system:

- A prediction for the BF for $D^+ \rightarrow a_0(980)^0 e^+ v_e$ is : $5 \sim 5.4(6 \sim 8) \times 10^{-5}$ for two(tetra) quark description
- A model-independent way to distinguish two different descriptions: R=1(3) for two(tetra) quark $R = \frac{\mathcal{B}(D^+ \to f_0(980)l^+\nu) + \mathcal{B}(D^+ \to f_0(600)l^+\nu)}{\mathcal{B}(D^+ \to g_0^0(980)l^+\nu)}.$ [PRD 82, 034016 (2010)]

$$\mathcal{B}(D^0 \to a_0(980)^- e^+ \nu_e) \times \mathcal{B}(a_0(980)^- \to \eta \pi^-) \quad \textbf{6.4\sigma first observation!} = (1.33^{+0.33}_{-0.29} \pm 0.09) \times 10^{-4}$$

$$\begin{split} \mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e) &\times \mathcal{B}(a_0(980)^0 \to \eta \pi^0) & \textbf{2.9\sigma} \\ &= (1.66^{+0.81}_{-0.66} \pm 0.11) \times 10^{-4}, \quad < 3.0 \times 10^{-4} \text{ at the } 90\% \text{ C.L.} \\ \\ \frac{\Gamma(D^0 \to a_0(980)^- e^+ \nu_e)}{\Gamma(D^+ \to a_0(980)^0 e^+ \nu_e)} &= 2.03 \pm 0.95 \pm 0.06, \end{split}$$

The result for $D^+ \rightarrow f_0 e^+ \nu_e$ is prepared by BESIII

EuNPC2018

Hadronic Decay: $D_s^+ \rightarrow p\bar{n}$

[PLB 663, 326(2008)]

- The only kinematic allowed baryonic D decay mode
- Help for understanding the dynamical enhancement of W-annihilation
 - Short-distance expected:Br~10⁻⁶
 - Long-distance enhance to: Br~10⁻³

• First evidence by CLEO-c: $(1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$ [PRL 100, 181802(2008)]

2018/09/06

Hadronic Decay: $D_s^+ \rightarrow \omega \pi^+$ and ωK^+

- $D_s^+ \rightarrow \omega \pi^+$ is a pure W-annihilation process,
- With the BF of $D_s^+ \to \omega \pi^+$ as as one of the inputs ,Q. Qin et al. **[PRD 89, 054006]** predicts: $\mathcal{B}(D_s^+ \to \omega K^+) = 0.6 \times 10^{-3}, A_{CP}(D_s^+ \to \omega K^+) = -0.6 \times 10^{-3}$ (without $\rho - \omega$ mixing) $\mathcal{B}(D_s^+ \to \omega K^+) = 0.7 \times 10^{-4}, A_{CP}(D_s^+ \to \omega K^+) = -2.3 \times 10^{-3}$ (with $\rho - \omega$ mixing)
- $D_s^+ \rightarrow \omega \pi^+$: evidence by CLEO $(2.1 \pm 0.9 \pm 0.1) \times 10^{-3}$ with a signal of 6.0 ± 2.4 events
- $D_s^+ \rightarrow \omega K^+$: CLEO set UL: < 2.4 × 10⁻³@90% C. L. [PRD 80, 051102(R) (2009)]

Fit to the invariant mass $M_{\pi^+\pi^-\pi^0}$ to get the DT yield Consistent with CLEO's measurement, but more precise. $D_s^+ \to \omega K^+$ $D_s^+ \rightarrow \omega \pi^+$ 38 ±8 Events/10 MeV/c² Events/10 MeV/c² 70 ± 11 **BESIII Preliminary results:** 6.2σ $\mathcal{B}(D_{s}^{+} \rightarrow \omega \pi^{+}) = (1.85 \pm 0.30_{stat.} \pm 0.19_{syst.}) \times 10^{-3}$ 7.7σ $\mathcal{B}(D_{s}^{+} \rightarrow \omega K^{+}) = (1.13 \pm 0.24_{stat.} \pm 0.14_{svst.}) \times 10^{-3}$ 10 First observation ! implies a small $\rho - \omega$ mixing. 0.9 $M_{\pi^*\pi\pi^0}$ [GeV/c²] M_{π*π(π0} [GeV/c²]

Amplitude Analysis : $D_s^+ \rightarrow \pi^+ \pi^- \eta$

Dalitz plot and projections

Motivation:

- Improve the precision of $Br(D_s^+ \rightarrow \rho^0 \eta)$
- Search for W-annihilation process $D_s^+ \rightarrow a_0(980)\pi$

Amplitude Analysis:

- Signal is selected by DT method with 7 tag modes
- Get 1239 events with purity ~98%
- Include 4 amplitudes in this fit

Preliminary: significances, phases, and fit fractions (FFs) for intermediate processes:

Amplitude	Significance (σ)	Phase	FF
$D_s^+ \to \rho^+ \eta$	> 20	0.0 (fixed)	$0.783 \pm 0.050 \pm 0.021$
$D_s^+ \to (\pi^+\pi^0)_V \eta$	5.7	$0.612 \pm 0.172 \pm 0.342$	$0.054 \pm 0.021 \pm 0.026$
$D_s^+ \to a_0(980)\pi$	16.2	$2.794 \pm 0.087 \pm 0.041$	$0.232 \pm 0.023 \pm 0.034$

*The amplitudes agree with: $A(D_s^+ \rightarrow a_0(980)^+\pi^0) = -A(D_s^+ \rightarrow a_0(980)^0\pi^+)$ within stat. uncertainty, thus we set the magnitudes to be the same with the phase difference fixed to π .

EuNPC2018

Amplitude Analysis : $D_s^+ \rightarrow \pi^+ \pi^- \eta$

BESIII Preliminary: $B(D_s^+ \to \pi^+ \pi^0 \eta) = (9.50 \pm 0.28_{stat.} \pm 0.41_{sys.})\%$, **PDG**= $(9.2 \pm 1.2)\%$

BF(sub-mode n) = $\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \eta) FF(n)$

Branching fraction	This measurement (%)	PDG value (%)
$BF(D_s^+ \to \rho^+ \eta)$	$7.44 \pm 0.48_{stat.} \pm 0.44_{sys.}$	8.9 ± 0.9
$BF(D_s^+ \rightarrow a_0(980)\pi)^*$	$2.20 \pm 0.22_{stat.} \pm 0.34_{sys.}$	<i>u</i> -
$\begin{array}{l} BF(D_{s}^{+}\rightarrow a_{0}(980)^{+}\pi^{0}) * \\ BF(D_{s}^{+}\rightarrow a_{0}(980)^{0}\pi^{+}) * \end{array}$	$1.46 \pm 0.15_{stat.} \pm 0.22_{sys.}$	- <u>-</u> -

*here, $a_0(980) \to \pi \eta$

- Improved precision for $B(D_s^+ \to \pi^+ \pi^0 \eta)$ and $B(D_s^+ \to \rho^0 \eta)$
- $D_s^+ \rightarrow a_0(980)\pi$ is the first observation !
- $D_s^+ \to a_0(980)\pi$ have larger BFs compared with $D_s^+ \to \omega\pi^+$ and $D_s^+ \to p\bar{n}$

Amplitude Analysis : $D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$

 $\cos \theta_{K^- \pi^0}^{0.0 \quad 0.5}$

 $\cos^{0.0}_{\cos\theta_{\pi^0\pi^0}}$

Motivation:

- Provides a window to study the decays $D \rightarrow AP$ and $D \rightarrow VV$ ٠
- Result can be used in branching fraction measurement and strong ٠ phase measurement

Amplitude Analysis:

- Signal is selected by DT method with 1 tag mode $D^0 \rightarrow K^- \pi^+$ ٠
- Get 5950 events with purity ~99% ٠
- Include 26 amplitudes in this fit ٠

 $\rightarrow K^{-}\pi^{+}\pi^{0}\pi^{0} = (8.98 \pm 0.13(\text{stat}) \pm 0.40(\text{syst}))\%$ First measurement $\mathcal{B}(D^0)$

Amplitude mode	FF (%)	Phase (ϕ)	Significance (σ)
$D \rightarrow SS$			
$D \rightarrow (K^-\pi^+)_{S-\text{wave}}(\pi^0\pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$	> 10
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$	6.0
$D \to AP, A \to VP$			
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)	> 10
$D \to K^{-}a_1(1260)^+, \rho^+\pi^0[D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$	6.1
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0 [S]$	$0.15 \pm 0.09 \pm 0.15$	$1.84 \pm 0.34 \pm 0.43$	4.9
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$	4.8
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.11$	$-1.35 \pm 0.43 \pm 0.48$	4.0
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$	> 10
$D \to (K^{*-}\pi^{0})_{A}\pi^{+}, K^{*-}\pi^{0}[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$	7.8
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$	> 10
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$	5.9
$D \rightarrow (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$	5.1
$D \to AP, A \to SP$			
$D \to ((K^-\pi^+)_{S-\text{wave}}\pi^0)_A \pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$	7.0
$D \rightarrow VS$			
$D \to (K^- \pi^0)_{S-\text{wave}} \rho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$	> 10
$D \to K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$	4.1
$D \to K^{*0}(\pi^0 \pi^0)_S$	$0.12_{-0.12}^{+0.27} \pm 0.12$	$1.45 \pm 0.48 \pm 0.51$	4.1
$D \to VP, V \to VP$			
$D \to (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$	> 10
$D \rightarrow VV$			
$D[S] \to K^{*-} \rho^+$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$	> 10
$D[P] \to K^{*-} \rho^+$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$	> 10
$D[D] \rightarrow K^{*-} \rho^+$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$	> 10
$D[P] \rightarrow (K^- \pi^0)_V \rho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$	5.7
$D[D] \to (K^- \pi^0)_V \rho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$	> 10
$D[D] \rightarrow K^{*-}(\pi^+\pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$	7.6
$D[S] \to (K^- \pi^0)_V (\pi^+ \pi^0)_V$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$	7.6
$D \rightarrow TS$			
$D \to (K^-\pi^+)_{S-\text{wave}}(\pi^0\pi^0)_T$	$0.30 \pm 0.21 \pm 0.30$	$-2.93 \pm 0.31 \pm 0.82$	5.8
$D \to (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$	4.0

19

Search Rare Decay: $D ightarrow h(h^{(\prime)})e^+e^-$ [PRD 97, 072015(2018)]

- $D \rightarrow X_u l^+ l^-$ are good channels to study FCNC transitions $c \rightarrow u l^+ l^-$
- BFs of $c \rightarrow u l^+ l^-$ in SM <10⁻⁹, enhance by long distance effect through virtual vector $\sim 10^{-6}$
- Four-body D⁰ decays with [μ⁺μ⁻]_{ρ⁰/ω} pair have been observed at LHCb (~10⁻⁶ 10⁻⁷)
 [PRL 119, 181805(2017), PLB 757, 558(2016)]
- The previous UL for four body D^0 decays with e^+e^- are $\sim 10^{-4} 10^{-5}$

- 4-body D^+ decays have been searched for the first time.
- Precision of other decays have been improved with one order.

Summary

- Using 2.93 fb⁻¹ and 3.19 fb⁻¹ e⁺e⁻ collision data taken @ 3.773 and 4.178 GeV with BESIII detector, experimental studies of charmed decays have been performed:
 - Measurements of FFs and $|V_{cd(s)}|$: better calibrate LQCD and test CKM unitarity
 - Test lepton flavor universality in (semi-)leptonic decay: consistent with SM
 - Measurements of W-annihilation process $D_s^+ \to p\bar{n}, D_s^+ \to \omega \pi^+$ and $D_s^+ \to a_0(980)\pi$
 - First observation of $D^0 \rightarrow a_0(980)^- e^+ \nu_e$, $D_s^+ \rightarrow \omega K^+$
 - Amplitude analysis for $D_s^+ \to \pi^+ \pi^- \eta$ and $D^0 \to K^- \pi^+ \pi^0 \pi^0$
 - Improved UL for FCNC process $D \rightarrow h(h^{(\prime)})e^+e^-$
- Thank you!!

• More results will be coming in the near future.

Semi-leptonic Decay: $D_s^+ \rightarrow K^{(*)0}e^+\nu_e$

Study of the form factors in $D_s^+ \rightarrow K^{*0}e^+\nu_e$ [preliminary]

The differential decay rate for $D_s^+ \to K^{*0}e^+\nu_e$ can be expressed in terms of three helicity amplitudes $(H_+(q^2), H_-(q^2) \text{ and } H_0(q^2))$ [PRL 110, 131802 (2013)]

$$\frac{d^{5}\Gamma}{dm_{K\pi}dq^{2}d\cos\theta_{K}d\cos\theta_{e}d\chi} = \frac{3}{8(4\pi)^{4}}G_{F}^{2}|V_{cd}|^{2}\frac{p_{K\pi}q^{2}}{M_{D_{s}}^{2}}\mathcal{B}(K^{*0}\rightarrow K^{+}\pi^{-})|\mathcal{BW}(m_{K\pi})|^{2} \\
\times [(1+\cos\theta_{e})^{2}\sin^{2}\theta_{K}|H_{+}(q^{2},m_{K\pi})|^{2} \\
+ (1-\cos\theta_{e})^{2}\sin^{2}\theta_{K}|H_{0}(q^{2},m_{K\pi})|^{2} \\
+ 4\sin^{2}\theta_{e}\cos^{2}\theta_{K}|H_{0}(q^{2},m_{K\pi})|^{2} \\
+ 4\sin\theta_{e}(1+\cos\theta_{e})\sin\theta_{K}\cos\theta_{K}\cos\chi H_{+}(q^{2},m_{K\pi})H_{0}(q^{2},m_{K\pi}) \\
- 4\sin\theta_{e}(1-\cos\theta_{e})\sin\theta_{K}\cos\theta_{K}\cos\chi H_{-}(q^{2},m_{K\pi})H_{0}(q^{2},m_{K\pi}) \\
- 2\sin^{2}\theta_{e}\sin^{2}\theta_{K}\cos2\chi H_{+}(q^{2},m_{K\pi})H_{-}(q^{2},m_{K\pi})].$$

The helicity amplitudes of $H_{+}(q^{2})$, $H_{-}(q^{2})$ and $H_{0}(q^{2})$ take the form of $H_{\pm}(q^{2}) = (M_{D_{s}} + m_{K\pi})A_{1}(q^{2}) \mp \frac{2M_{D_{s}}P_{K\pi}}{M_{D_{s}} + M_{K\pi}}V(q^{2})$ and $H_{0}(q^{2}) = \frac{1}{2m_{K\pi}q}[(M_{D_{s}}^{2} - m_{K\pi}^{2} - q^{2})(M_{D_{s}} + m_{K\pi})A_{1}(q^{2}) - \frac{4M_{D_{s}}^{2}P_{K\pi}^{2}}{M_{D_{s}} + M_{K\pi}}A_{2}(q^{2})],$ $A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/M_{A}^{2}}$ and $V(q^{2}) = \frac{V(0)}{1 - q^{2}/M_{V}^{2}}$, $r_{V} = \frac{V(0)}{A_{1}(0)}$ and $r_{2} = \frac{A_{2}(0)}{A_{1}(0)}.$ The Breit-Wigner function of K^{*0} line shape takes the form as $\mathcal{BW}(M_{K\pi}) = \frac{\sqrt{m_{0}\Gamma_{0}(P/P_{0})}}{m_{0}^{2} - m_{K\pi}^{2} - im_{0}\Gamma(m_{K\pi})} \frac{B(p)}{B(p_{0})}$ where $B(p) = \frac{1}{\sqrt{1 + R^{2}p^{2}}}$ with R = 3 GeV⁻¹ and $\Gamma(m_{K\pi}) = \Gamma_{0}(\frac{P}{P_{0}})^{3} \frac{m_{0}}{m_{K\pi}} (\frac{B(p)}{B(P_{0})})^{2}.$

Hadronic Decay: $D \rightarrow PP$ [PRD97,072004]

BFs of $D \rightarrow PP$ are obtained using ST method:

Mode	$\mathcal{B}(imes 10^{-3})$	\mathcal{B}_{PDG} (×10 ⁻³)
$D^+ o \pi^+ \pi^0$	$1.259 \pm 0.033 \pm 0.023$	1.24 ± 0.06
$D^+ \rightarrow K^+ \pi^0$	$0.232 \pm 0.021 \pm 0.006$	0.189 ± 0.025
$D^+ o \pi^+ \eta$	$3.790 \pm 0.070 \pm 0.068$	3.66 ± 0.22
$D^+ \to K^+ \eta$	$0.151 \pm 0.025 \pm 0.014$	0.112 ± 0.018
$D^+ o \pi^+ \eta'$	$5.12 \pm 0.14 \pm 0.024$	4.84 ± 0.31
$D^+ \rightarrow K^+ \eta'$	$0.164 \pm 0.051 \pm 0.024$	0.183 ± 0.023
$D^+ \rightarrow K_S^0 \pi^+$	$15.91 \pm 0.06 \pm 0.30$	15.3 ± 0.6
$D^+ \rightarrow K_S^0 K^+$	$3.183 \pm 0.029 \pm 0.060$	2.95 ± 0.15
$D^0 ightarrow \pi^+\pi^-$	$1.508 \pm 0.018 \pm 0.022$	1.421 ± 0.025
$D^0 \rightarrow K^+ K^-$	$4.233 \pm 0.021 \pm 0.064$	4.01 ± 0.07
$D^0 \to K^{\mp} \pi^{\pm}$	$38.98 \pm 0.06 \pm 0.51$	39.4 ± 0.4
$D^0 \rightarrow K_S^0 \pi^0$	$12.39 \pm 0.06 \pm 0.27$	12.0 ± 0.4
$D^0 \rightarrow K_S^0 \eta$	$5.13 \pm 0.07 \pm 0.12$	4.85 ± 0.30
$D^0 \rightarrow K^0_S \eta'$	$9.49 \pm 0.20 \pm 0.36$	9.5 ± 0.5

The results from BESIII are consistent with the world average values within uncertainties. The BFs of $D^+ \rightarrow \pi^+ \pi^0, K^+ \pi^0, \pi^+ \eta, \pi^+ \eta', K_S^0 \pi^+, K_S^0 K^+$ and $D^0 \rightarrow K_S^0 \pi^0, K_S^0 \eta, K_S^0 \eta'$ are determined with improved precision.

Search for $D^+ \rightarrow \gamma e^+ \nu_e$ [PRD 95, 071102(2017)]

 no helicity suppression in contrast to pure leptonic decay, and simpler nonperturbative QCD calculation without final-state hadron

EuNPC2018

Search for $D^+ ightarrow D^0 e^+ \nu_e$ [PRD 96, 092002(2017)]

- The heavy *c* quark remains unchanged while the lighter *d* quark decays weakly
- $B_{theo} = 2.78 \times 10^{-13}$ by it's form factors in the SM [EPJC 59, 841 (2009)]

2D fit to each tag mode $B(D^+ \to \gamma e^+ \nu_e) < 1.0 \times 10^{-4} @90\% \mbox{ C. L.}$