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For large wavelengths, only sensitive to overall charge: Thomson scattering

But for smaller wavelengths, the target is polarised by the electric and magnetic

fields

To leading order

He f f =
(p−QA)2

2m
+Qφ− 1

2
4π

(
α~E2+β~H2

+ γE1E1~σ ·~E× ~̇E + γM1M1~σ · ~H× ~̇H−2γM1E2Ei jσiH j +2γE1M2Hi jσiE j

)
where Ei j =

1
2(∇iE j +∇ jEi) and Hi j =

1
2(∇iH j +∇ jHi)
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structure of the nucleon; polarisabilities are leading signs of non-pointlike nucleons

as we increase the photon energy.
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At a hadronic level, we consider Compton scattering from the nucleon as probing

its excitations and particularly its pionic cloud.

N∆ *
+ +....+

Two common methods: Dispersion relations and Chiral Perturbation Theory

Both consider pions as crucial source of energy-dependence in amplitudes (Delta

resonance also captured)

DR uses partial wave analysis of γN→ πN data as input

Chiral Perturbation Theory is a field theory which treats pions and nucleons as

basic degrees of freedom. Also predicts nuclear forces and structure.

Both have difficulties with parameter-free predictions; both can be used to fit nucle-

onic Compton scattering data and extract polarisabiltiies; only χPT is actively being

used for few-nucleon systems.



Proton radius puzzle

Judith McGovern Nucleon Polarisabilities Bologna, September 6th 2018

M
ai
nz
20
10

JL
ab
20
11

Si
ck
20
12

H
yd
ro
ge
n

CO
D
A
TA

10

CR
EM

A

0.84

0.85

0.86

0.87

0.88

0.89

0.90
rpHfmL

Hydrogen etc: rp = 0.8775(51) fm, CODATA 2010

Muonic hydrogen: rp = 0.84087±0.00039 fm
Pohl et al, Nature 466, 213 (2010)Antognini et al, Science 339 417

7σ deviation! (Or maybe 5 sigma with revised CODATA value)



Connection to β
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γ ∗γ ∗

Σ Q
2

+ 4πβ

Muonic H EM mass splitting

Subtracted DR

2 

p

p

µ

p

T 1(ν,Q
2) =−ν

2
∫

∞

ν2
th

dν′2

ν′2
W1(ν

′,Q2)

ν′2−ν2 +4πβQ2+O(Q4)

β = 3.1±0.5 =⇒ ∆Epol =−8.5(1.1)µeV ∆E2γ =−33.5(2.0)µeV

M. Birse & JMcG, Eur. Phys. J. A 48 (2012) 120



Is there a deuteron radius puzzle?
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CREMA, Science 2016

Possible∼ 2.5σ discrepancy between muonic value and prediction based on “small”

proton radius and precisely-known (electronic) isotope shift

but interplay between nuclear and nucleonic structure still to be worked out.
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Chiral symmetry is an extension of isospin symmetry which is exact for massless

quarks: we are free to redefine up and down for right- and left-handed quarks

separately.

The symmetry is hidden – it is a symmetry of the QCD Lagrangian but not of the

vacuum or hadron spectrum (isospin multiplets but no parity doublets).

This is the “Higgs mechanism” of QCD: hadrons get (almost all of) their mass from

their interactions with the QCD vacuum; 〈qq〉 6= 0.

The hidden symmetry shows up as a massless Goldstone bosons — the pion.

mπ is not quite zero because the quark masses also couple to the Higgs conden-

sate (also contributes 5-10% of the mass of other hadrons)



Chiral Perturbation theory
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Effective field theory of QCD– relies on separation of scales

• pions are light (mπ� mρ)

• low-energy pions interact weakly with other matter (LπNN ∝ N∂µπN).

Thus pion loops are suppressed by ≈ m2
π/Λ2 where Λ ≈ mρ. The Lagrangian

contains infinitely many terms:

L = ∑
n

L(n)(c(n)i )

Non-pionic nucleon structure shows up in low energy constants c(n)i , but is sup-

pressed by power of momentum: (k/Λ)n:

N*

L
(4)

Systematic: Calculations to nth order involve vertices from L(n) and pion loops with

vertices from L(n−2); truncation errors are ∼ (k/Λ)(n+1).



χPT for Compton Scattering from the nucleon
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We include nucleons, pions and the Delta in our Lagrangian.

L(4),CT
πN = 2πe2H†

[(
δβ

(s)+δβ
(v)

τ3

)
(1

2gµν−vµvν)−
(

δα
(s)+δα

(v)
τ3

)
vµvν

]
FµρFν

ρH.

Counterterms shift α and β at 4th order. Counterterms for spin pols at 5th order.
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We include nucleons, pions and the Delta in our Lagrangian.

L(4),CT
πN = 2πe2H†

[(
δβ

(s)+δβ
(v)

τ3

)
(1

2gµν−vµvν)−
(

δα
(s)+δα

(v)
τ3

)
vµvν

]
FµρFν

ρH.

Counterterms shift α and β at 4th order. Counterterms for spin pols at 5th order.

LPP,(2)
γN∆

=
3e

2MN(MN +M∆)

[
ψ̄(igMF̃µν−gEγ5Fµν)∂µΨ

3
ν−Ψ̄

3
ν

←−
∂ µ(igMF̃µν −gEγ5Fµν)ψ

]
,
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We include nucleons, pions and the Delta in our Lagrangian.

L(4),CT
πN = 2πe2H†

[(
δβ

(s)+δβ
(v)

τ3

)
(1

2gµν−vµvν)−
(

δα
(s)+δα

(v)
τ3

)
vµvν

]
FµρFν

ρH.

Counterterms shift α and β at 4th order. Counterterms for spin pols at 5th order.

LPP,(2)
γN∆

=
3e

2MN(MN +M∆)

[
ψ̄(igMF̃µν−gEγ5Fµν)∂µΨ

3
ν−Ψ̄

3
ν

←−
∂ µ(igMF̃µν −gEγ5Fµν)ψ

]
,

∆ ≡ M∆−MN ≈ 271 MeV is a rather small scale. Traditionally it is counted as

∆/Λχ ∼mπ/Λχ (“SSE”). But in Compton scattering the pion is clearly important at

lower energies than the Delta.

Alternative: count
mπ

∆
∼ ∆

Λχ

⇒ δ
2≡
(

∆

Λχ

)2
∼ mπ

Λχ

Then graphs with one ∆ propagator are one order of δ higher than the correspond-

ing nucleon graphs in low energy region.

Pascalutsa and Phillips, Phys. Rev. C67 (2003) 055202
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We include nucleons, pions and the Delta in our Lagrangian.

L(4),CT
πN = 2πe2H†

[(
δβ

(s)+δβ
(v)

τ3

)
(1

2gµν−vµvν)−
(

δα
(s)+δα

(v)
τ3

)
vµvν

]
FµρFν

ρH.

Counterterms shift α and β at 4th order. Counterterms for spin pols at 5th order.

LPP,(2)
γN∆

=
3e

2MN(MN +M∆)

[
ψ̄(igMF̃µν−gEγ5Fµν)∂µΨ

3
ν−Ψ̄

3
ν

←−
∂ µ(igMF̃µν −gEγ5Fµν)ψ

]
,

∆ ≡ M∆−MN ≈ 271 MeV is a rather small scale. Traditionally it is counted as

∆/Λχ ∼mπ/Λχ (“SSE”). But in Compton scattering the pion is clearly important at

lower energies than the Delta.

Alternative: count
mπ

∆
∼ ∆

Λχ

⇒ δ
2≡
(

∆

Λχ

)2
∼ mπ

Λχ

Then graphs with one ∆ propagator are one order of δ higher than the correspond-

ing nucleon graphs in low energy region.

Pascalutsa and Phillips, Phys. Rev. C67 (2003) 055202

Different counting in resonance region; we work to at least NLO in both.
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Tree graphs
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Born terms give the Thomson term and spin-dependent LETs (ensured by gauge

and Lorentz invariance)

In resonance region Delta-pole graph dominates: width from resuming self-energy

⇒ S∆ ∼ 1
ω−(M∆−MN)+iΓ(ω)



Loops
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At 4th order we have 1/M corrections and ci contributions

Delta loops are less important in low-energy region

Important: predicts full energy-dependent amplitudes, not just polarisabilities



Deuteron

Judith McGovern Nucleon Polarisabilities Bologna, September 6th 2018

Consistent treatment of one- and two-body diagrams

~ all one-body diagrams from previous slides. the ∆ only enters here at this order.

Ensuring correct Thomson limit for deuteron is important even at 50-60 MeV.



Deuteron
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Consistent treatment of one- and two-body diagrams

~ all one-body diagrams from previous slides. the ∆ only enters here at this order.

Ensuring correct Thomson limit for deuteron is important even at 50-60 MeV.

3He and 4He consist only of the same N ≤ 2 diagrams with one or two spectator

nuclei.



Fitting the proton data
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Constraining α+β with Baldin Sum rule and fitting consistent data set up to 170 MeV:
αp = (10.65±0.35(stat)±0.2(Bald)±0.3(theory))×10−4 fm3

βp = (3.15∓0.35(stat)±0.2(Bald)∓0.3(theory))×10−4 fm3



Extraction of isoscalar polarisabilities from deuteron
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So far only O(Q3); further work required to go above pion threshold.

Older data from Illinois , Saskatoon, and Lund (29 pts in total)

New data from Lund , 23 points. Myers et al. , Phys. Rev. Lett. 113, 262506 (2014)



Extraction of isoscalar polarisabilities from deuteron
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So far only O(Q3); further work required to go above pion threshold.

Older data from Illinois , Saskatoon, and Lund (29 pts in total)

New data from Lund , 23 points. Myers et al. , Phys. Rev. Lett. 113, 262506 (2014)

αs = 11.1±0.6(stat)±0.2(BSR)±0.8(th)
βs = 3.4∓0.6(stat)±0.2(BSR)∓0.8(th).

αn = 11.65±1.25(stat)±0.2(BSR)±0.8(th)
βn = 3.55∓1.25(stat)±0.2(BSR)∓0.8(th)



Comparison

Judith McGovern Nucleon Polarisabilities Bologna, September 6th 2018

p PDG 2013

n PDG

2013

p Baldin
S

rule

n B
SR

proton

neutron

Grießhammer 2014

7 8 9 10 11 12 13 14
1

2

3

4

5

6

7

ΑE1 @10-4 fm3D

Β
M

1
@10

-
4

fm
3 D

expHstat+sysL+theory�model 1Σ-error in quadrature
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Multipoles for proton theory comparison
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Restricting to lowest photon angular momentum, but at finite photon energy, we

can write the effective Hamiltonian

He f f =
(p−QA)2

2m
+Qφ− 1

2
4π

(
αE1(ω)~E

2+βM1(ω)~H
2

+ γE1E1(ω)~σ ·~E× ~̇E + γM1M1(ω)~σ · ~H× ~̇H

− 2γM1E2(ω)Ei jσiH j +2γE1M2(ω)Hi jσiE j
)

with α≡ αE1(0) etc
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Restricting to lowest photon angular momentum, but at finite photon energy, we

can write the effective Hamiltonian

He f f =
(p−QA)2

2m
+Qφ− 1

2
4π

(
αE1(ω)~E

2+βM1(ω)~H
2

+ γE1E1(ω)~σ ·~E× ~̇E + γM1M1(ω)~σ · ~H× ~̇H

− 2γM1E2(ω)Ei jσiH j +2γE1M2(ω)Hi jσiE j
)

with α≡ αE1(0) etc

We can predict the full energy-dependence of the amplitudes, and only the value

at the origin for α, β and γM1M1 are fitted.



Comparison of theoretical predictions for multipoles
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Different predictions do not fully agree on the physical origins of the polarisabilities.
But Chiral and DR predictions agree very well for the shape of the energy depen-
dence of corresponding multipoles
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DR: Hildebrandt et al. , Eur. Phys. J. A 20 293 (2004) Chiral: V Lensky et al. EPJC 75 604 (2015)

Our strategy: Static polarisabilities best obtained from Compton scattering.
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Checking in covariant framework (3rd order)
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αp = (10.6±0.25(stat)±0.2(Bald)±0.4(theory))×10−4 fm3

βp = (3.2∓0.25(stat)±0.2(Bald)±0.4(theory))×10−4 fm3

V. Lensky & JMcG Phys. Rev. C89 032202 (2014) ; V. Lensky et al. Phys. Rev. C86 048201 (2012)



Lattice and chiral extrapolations
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H. Grießhammer, JMcG, D. Phillips Eur. Phys. J. A 52 (2016) 139



Accessing spin polarisabilities
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Heff =
(p−QA)2

2m
+Qφ− (Q+κ)

2m
σ ·H− 1

2
4π

(
α~E2+β~H2

+ γE1E1~σ ·~E× ~̇E + γM1M1~σ · ~H× ~̇H−2γM1E2Ei jσiH j +2γE1M2Hi jσiE j

)
Spin-polarisabities have most influence if the beam or target or both are polarised.

Linearly polarised beam Σ3 =
σ‖−σ⊥

σ‖+σ⊥

Circular beam, polarised target Σ2x =
σR
⊥−σL

⊥
σR
⊥+σL

⊥
Σ2z =

σR
‖ −σL

‖
σR
‖ +σL

‖



Compton @MAMI
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New programme at A2 experiment using Crystal Ball and TAPS detectors

Large-acceptance detector

Tagged photon beam, circ. or lin. polarised or unpolarised,

Unpolarised (liquid hydrogen)... or polarised (butanol) protons



First results from MAMI
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Σ2x: Target polarised perpendicular to reaction plane, RH or LH circularly polarised

photons P. Martell, PhD thesis

Ωlab=288±15 MeV
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Σ2x: Target polarised perpendicular to reaction plane, RH or LH circularly polarised

photons P. Martell, PhD thesis
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Σ3: Unpolarised target, photons polarised in or perpendicular to reaction plane
C. Collicott, PhD thesis (LEGS data )
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Predictions and fits for proton polarisabilities
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Chiral prediction (δ3, BChPT, Lensky et al. , EPJC 75 604 (2015)) and NLO (δ4, HBChPT,
JMcG et al. E. P. J. A 49 12 (2013), Grießhammer et al. 1511.01952

α+β α−β γ0 γπ

δ3 B 15.1±1.0 7.3±1.0 −0.9±1.4 [−46.4]+7.2±1.7
δ4 HB 13.8±0.4∗ 7.5±0.7±0.6 −2.6±0.5stat±0.6∗th [−46.4]+5.5±0.5stat±1.8∗th
SR/DR 13.8±0.4 10.7±0.2 −0.9±0.14 [−46.4]+7.6±1.8

DR: fixed-angle, Drechsel et al. Phys. Rep. 378 99;

γE1E1 γM1M1 γE1M2 γM1E2
δ3 B −3.3±0.8 2.9±1.5 0.2±0.2 1.1±0.3
δ4 HB −1.1±1.9 2.2±0.5stat±0.6∗th −0.4±0.6 1.9±0.5
DR −3.85±0.45 2.8±0.1 −0.15±0.15 2.0±0.1
MAMI1 −3.5±1.2 3.2±0.9 −0.7±1.2 2.0±0.3
MAMI2 −5.0±1.5 3.1±0.9 1.7±1.7 1.3±0.4

DR: fixed-t, summarised in HG, JMcG, DP & GF Prog. Nucl. Part. Phys. 67 841 (2012)

MAMI1: published extraction from MAMI Σ2x and LEGS Σ3 Martel

MAMI2: unpublished extraction from Σ2x and Σ3 Collicott

δ4: theory errors from convergence. ∗: γM1M1 from fit, otherwise γM1M1 = 6.4
Note DR errors only reflect spread from two databases

see also Pasquini, Pedroni and Sconfietti, Phys. Rev. C 98 (2018) 015204
and Krupina, Lensky and Pascalutsa, PLB 782 (2018) 34



Predictions and fits for neutron polarisabilities
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Chiral prediction (δ3, BChPT, Lensky et al. , EPJC 75 604 (2015)) and NLO (δ4, HBChPT,

Grießhammer et al. 1511.01952

α+β α−β γ0 γπ

δ3 B 18.3±4.1 9.1±4.1 0±1.4 [46.4]+9.0±2.0
δ4 HB 15.2±0.4 8.1±2.5±0.8 0.5±0.5stat±1.8∗th [46.4]+7.7±0.5stat±1.8∗th
SR/DR 15.2±0.4 11.5 −0.25 [46.4]±13.35

DR: fixed-t, Drechsel et al. Phys. Rep. 378 99;

γE1E1 γM1M1 γE1M2 γM1E2
δ3 B −4.7±1.1 2.9±1.5 0.2±0.2 1.6±0.4
δ4 −4.0±1.9 1.3±0.5stat±0.5∗th −0.1±0.6 2.4±0.5
DR −5.75±0.15 3.8±0.1 −0.8±0.1 3.0±0.1

DR: fixed-t, Holstein et al. , Babusci et al.

δ4: theory errors as proton. ∗: including input from proton fit.



Multipoles again
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MAMI data is taken well into the resonance region....

Not ideal for extracting zero-energy polarisabilities!

ωcm



Lower energy experiments
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Data on Σ3 from MAMI V. Sokhoyan, E. J. Downie, E. Mornacchi, JMcG, N. Krupina, et al. ,

Eur. Phys. J. A (2017) 53: 14
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Data on Σ3 from MAMI V. Sokhoyan, E. J. Downie, E. Mornacchi, JMcG, N. Krupina, et al. ,

Eur. Phys. J. A (2017) 53: 14
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More data taking planned

Experiments also planned at HIγS @TUNL

low energy–up to about 80 MeV currently, 120 MeV after upgrades?.



Sensitivity studies: Σ3
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Sensitivity studies: Σ2x
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Sensitivity studies: Σ2z
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Other asymmetries and polarisability transfer observables
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Numerical index: polarisation of light

• 3: linear, 0 or π

• 1: linear, ±π
2

• 2: right/left circular

Cartesian index: polarisation of nucleon

• z: along beam

• y: ⊥ to reaction plane

• x: in reaction plane, ⊥ to z

Prime on either indicates scattered photon or nucleon: polarisation transfer.

polarised scattered nucleon might be detectable.



Sensitivity studies: Σy and Σ3y
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Sensitivity studies: Σ2x′ and Σ2z′
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Polarised scattering from deuterium
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∆ included, 3rd order. source: Griesshammer and Shukla Eur. Phys. J. A46:249, 2010



Polarised scattering from 3He and neutron polarisabilities
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The spin of 3He is largely carried by the neutro-n enhanced sensitivity in some

polarised observables to neutron polarisabilities
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The spin of 3He is largely carried by the neutro-n enhanced sensitivity in some

polarised observables to neutron polarisabilities
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Polarised scattering from 3He and neutron polarisabilities
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Polarised scattering from 3He and neutron polarisabilities
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Future

Judith McGovern Nucleon Polarisabilities Bologna, September 6th 2018

Experimental programme at MAMI and HIγS

Polarised γp scattering at MAMI: data being analysed

Active target being developed for double-polarised experiments at low energies

Plans for 3He

Further data on deuteron at higher energies expected from MAX-lab / MAX-IV

HIγS up to about 100 MeV: approved experiments on polarised proton, deuteron

and 3He

Should soon know much more about the polarisabilities of the proton and neutron
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Backup slides
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Resonance region—very sensitive to magnetic γN∆ coupling (∼ g4
M). We iteratively

fit gM; value 10% lower than fit to photo production.



Details of fit
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Resonance region—very sensitive to magnetic γN∆ coupling (∼ g4
M). We iteratively

fit gM; value 10% lower than fit to photo production.

We cannot get an acceptable fit with the predicted value of γM1M1 = 6.4
(large contributions both from ∆ and O(Q4) πN loops).

We FIT it to give γM1M1 = 2.2±0.5(stat). Final fit good: χ2=113.2 for 135 d.o.f.

4th-order statistical errors on α−β are larger than 3rd order.
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Resonance region—very sensitive to magnetic γN∆ coupling (∼ g4
M). We iteratively

fit gM; value 10% lower than fit to photo production.

We cannot get an acceptable fit with the predicted value of γM1M1 = 6.4
(large contributions both from ∆ and O(Q4) πN loops).

We FIT it to give γM1M1 = 2.2±0.5(stat). Final fit good: χ2=113.2 for 135 d.o.f.

4th-order statistical errors on α−β are larger than 3rd order.
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Also check sensitivity to data: need to be

somewhat selective of old data sets to get a

good χ2, can’t fit Hallin data above 150MeV.


