STELLE DI NEUTRONI, KILONOVAE E FABBRICHE DELL'ORO

Barbara Patricelli^{1,2}

Scuola Normale Superiore di Pisa ²INFN - Sezione di Pisa

Sac

What is a kilonova?

Image credit: Metzger & Berger 2012

- Significant mass (0.01-0.1 M_☉) is ejected during NS-NS NS-BH mergers at sub-relativistic velocity (0.1- 0.3 c)
- The neutron-rich ejecta undergoes rapid neutron capture (r-process) nucleosynthesis
- The radioactive decay of unstable nuclei powers a rapidly evolving, supernova-like transient: the "kilonova".

r-*process*: neutron capture much faster than beta decay; this requires special conditions:

 $T > 10^9$ K, high neutron density 10^{22} cm $^{-3}$

What is a kilonova?

Image credit: Metzger & Berger 2012

- Significant mass (0.01-0.1 M_☉) is ejected during NS-NS NS-BH mergers at sub-relativistic velocity (0.1-0.3 c)
- The neutron-rich ejecta undergoes rapid neutron capture (r-process) nucleosynthesis
- The radioactive decay of unstable nuclei powers a rapidly evolving, supernova-like transient: the "kilonova".
- The interaction of the sub-relativistic outflow with the surrounding matter produces long lasting radio signals (years)

The kilonova Optical observations

A kilonova detection for GRB 130603B?

F606W/optical NIR/F160W

- blue curve: optical afterglow
- orange curves: kilonova NIR model

ejected masses: $10^{-2}~\text{M}_{\odot}$ and $10^{-1}~\text{M}_{\odot}$

- cyan curve: kilonova optical model
- solid red curves: afterglow+kilonova

Tanvir et al, Nature, 500, 547 (2013)

AT 2017gfo:

the first spectroscopic identification of a kilonova associated with a GW signal and a short GRB

The optical transient AT 2017gfo

During the electromagnetic follow-up of GW170817, an **optical transient** (SSS17a/AT 2017gfo) has been discovered; the transient is located at \sim 10" from the center of the galaxy NGC 4993, at a distance of 40 Mpc.

Image credit: 1M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley

The optical transient AT 2017gfo

The optical transient was later observed with different instruments

(REM, ESO-VST, ESO-VLT...)

Pian et al., Nature, 2017

Could it be the optical afterglow emission?

- Chandra X-ray observation
 - X-ray source discovered 9 days after GW170817
 - consistent with afterglow emission seen off-axis

Troja et al., Nature, 2017

Data have been used to evaluate the expected contribution in other energy bands \Rightarrow

The predicted optical afterglow is much fainter than the observed optical emission

Pian et al., Nature, 2017

The kilonova Optical observations

The spectroscopic identification of the kilonova

(Loading Video...)

Credit: ESO/E. Pian et al./S. Smartt & ePESSTO

The spectroscopic identification of the kilonova

- observational data
- lanthanide-rich dynamical ejecta region
- wind region with mixed (lanthanide-free and lanthanide-rich) composition
- wind region with lanthanide-free composition
- sum of the three model components

(Models from Tanaka et al. 2017)

The evolution of the observed spectrum with time is in a good match with the expectations for kilonovae \Rightarrow this is the first spectroscopic identification of a kilonova!

Pian et al., Nature, 2017

Kilonovae as cosmic gold mines

Image Credits: Jennifer Johnson/SDSS/CC BY 2.0

Eso/L. Calçada/M. Kornmesser

Observations confirmed that kilonovae can build up the heaviest elements,

including gold and platinum!

Conclusions

The EM follow-up campaign led to many discoveries!

Among them, the kilonova:

- AT 2017gfo is the first spectroscopically identified kilonova
- AT 2017gfo is the first observation of a kilonova associated to both a short GRB and a GW event
- kilonovae produce heavy elements (gold, platinum...)

Multi-messenger astronomy has just begun, many discoveries are expected in the near future!