Seminario Generale INFN

24 October 2017, Dipartimento di Fisica, Genova

Bottomonium physics: state of the art and perspectives at the Belle II experiment

Elisa Guido INFN Torino

Outline

- * Main achievements of the B-factories in bottomonium spectroscopy
 - Discovery of new resonances
 - Exotic states
 - Study of transitions between bottomonium states, and problematic theoretical interpretations
- * What is left to do for the 2nd generation of B-factories?

* A bound state of a b and an anti-b quark

* A bound state of a b and an anti-b quark

- A bound state of a b and an anti-b quark
 - Access to energy levels below, near and above the BB threshold
 - * Narrow resonances: $\Gamma < \Delta M << M$

* A bound state of a b and an anti-b quark

- Access to energy levels below, near and above the BB threshold
- * Narrow resonances: $\Gamma < \Delta M << M$

A window to look at the different regimes of QCD: multiscale system

- * at high energies: perturbative approach (expansion in $\alpha_S(Q^2)$)
- * at low energies: non-perturbative effects dominate
- * in between, more complex approaches needed: interplay between perturbative and non-perturbative QCD

- A bound state of a b and an anti-b quark
 - * Access to energy levels below, near and above the BB threshold
 - * Narrow resonances: $\Gamma < \Delta M << M$

- A window to look at the different regimes of QCD: multiscale system
 - * at high energies: perturbative approach (expansion in $\alpha_S(Q^2)$)
 - * at low energies: non-perturbative effects dominate
 - in between, more complex approaches needed: interplay between perturbative and non-perturbative QCD
- Different sectors of interest:
 - * **spectroscopy**: which level exist and why? masses, widths, quantum numbers. Are all the observed states expected and compatible with a bb content? Unconvential quarkonia?
 - decays: increasing precision in the dominant modes, measurement of the rarest ones: is theory able to predict their branching fractions?
 - production and behaviour in media

A bound state of a b and an anti-b quark

- Access to energy levels below, near and above the BB threshold
- * Narrow resonances: $\Gamma < \Delta M << M$

* at high energies: perturbative approach (expansion in $\alpha_S(Q^2)$)

* at low

in bet

Interplay between theory and experiment is vital!

ninate

ed: interplay between

- Different sectors of interest:
 - * **spectroscopy**: which level exist and why? masses, widths, quantum numbers. Are all the observed states expected and compatible with a bb content? Unconvential quarkonia?
 - decays: increasing precision in the dominant modes, measurement of the rarest ones: is theory able to predict their branching fractions?
 - production and behaviour in media

 S_2

b

BABAR and Belle

* BABAR & Belle: experiments at asymmetric e+e- colliders, run at the energies of the different Υ resonances (or above open-bottom threshold) for ~ a decade

B-factories data samples

Collected by far the largest data samples at these energies: a total of more than 1.5 ab⁻¹ among the two experiments

- Belle: 1 fb⁻¹ scan of [10.77,11.02] GeV/c² in 19 steps
- BABAR: 3.3 fb⁻¹ scan of [10.54,11.20] GeV/c² in 132 steps + 0.6 fb⁻¹ scan of [10.96,11.10] GeV/c² in 8 steps

The ground state and its excitation

The ground state and its excitation

- * Observation of $\Upsilon(3S,2S)$ —> $\gamma\eta_b(1S)$ by <u>BABAR</u> (2008-2009) + re-analysis of previous data by <u>CLEO</u> (2010)
- Fit to the inclusive photon CM energy spectrum, searching for monochromatic photon above the smooth non-peaking bkg

Combined Y(3S,2S): $m(\eta_b(1S)) = (9390.8 \pm 3.2) MeV/c^2$ From the Y(2S): $\Delta M_{hf} = (66.1 \pm 5.4) MeV/c^2$

BABAR Coll. PRL 101 (2008) 071801 BABAR Coll. PRL 103 (2009) 161801 CLEO Coll. PRD 81 (2010) 031104 Belle Coll. PRL 109 (2012) 232002

The ground state and its excitation

- * Observation of $\Upsilon(3S,2S)$ —> $\gamma\eta_b(1S)$ by <u>BABAR</u> (2008-2009) = + re-analysis of previous data by <u>CLEO</u> (2010)
- Fit to the inclusive photon CM energy spectrum, searching for monochromatic photon above the smooth non-peaking bkg
- * A new unpredicted pathway to access the $\eta_b(1S)$ and $\eta_b(2S)$ from $\Upsilon(5S)$ by <u>Belle</u> (2012)
- Access via E1 transitions from the h_b(nP) states:
 - * Evidence of $\eta_b(2S)$
 - * Improved $\eta_b(1S)$ mass measurement wrt the M1 transitions, and first measurement of the width

Transition	$h_b(1P) \rightarrow \eta_b(1S)$	$h_b(2P) \rightarrow \eta_b(1S)$
$Yield \times 10^{-3}$	23.5 ± 2.0	10.3 ± 1.3
$\mathcal{B} \times 10^2$	$49.2 \pm 5.7 ^{+5.6}_{-3.3}$	$22.3 \pm 3.8 {}^{+3.1}_{-3.3}$
Significance	15σ	9σ
$m_{\eta_b(1S)}({ m MeV}/c^2)$	$9402.4 \pm 1.5 \pm 1.8$	(joint fit)
$\Delta m_{hf} \; (\text{MeV}/c^2)$	57.9 ± 2.3	(joint fit)
$\Gamma(\eta_b(1S))$ (MeV)	11^{+6}_{-4}	(joint fit)

Transition	$h_b(2P) \rightarrow \eta_b(2S)$
$Yield \times 10^{-3}$	25.8 ± 4.9
$\mathcal{B} \times 10^2$	$49.2 \pm 5.7 ^{+5.6}_{-3.3}$
Significance	4.2σ
$m_{\eta_b(2S)}({ m MeV}/c^2)$	$9999.0 \pm 3.5 {}^{+2.8}_{-1.9}$
$\Delta m_{hf}~({\rm MeV}/c^2)$	$24.3_{-4.5}^{+4.0}$

BABAR Coll. PRL 101 (2008) 071801 BABAR Coll. PRL 103 (2009) 161801 CLEO Coll. PRD 81 (2010) 031104 Belle Coll. PRL 109 (2012) 232002

- * BABAR $\Upsilon(3S)$ —> π^0 $h_b(1P)$, $h_b(1P)$ —> $\gamma \eta_b(1S)$, using the η_b mass measurement to constrain the expected energy of the photon
- * 3.3 σ evidence for a resonance recoiling against the π^0 , with a mass of (9902 ± 4 ± 2) MeV/c², consistent with the prediction of the h_b mass from spin-weighted average of the $\chi_{bJ}(1P)$ states

BABAR Coll. PRD 84 (2011) 112007 Belle Coll. PRL 108 (2012) 032001

- * BABAR $\Upsilon(3S)$ —> π^0 $h_b(1P)$, $h_b(1P)$ —> $\gamma \eta_b(1S)$, using the η_b mass measurement to constrain the expected energy of the photon
- * 3.3 σ evidence for a resonance recoiling against the π^0 , with a mass of (9902 ± 4 ± 2) MeV/c², consistent with the prediction of the h_b mass from spin-weighted average of the $\chi_{bJ}(1P)$ states
- * Belle observed both $h_b(1P)$ and $h_b(2P)$ in $e^+e^- -> h_b(nP)\pi^+\pi^-$ using data at $\Upsilon(5S)$, prompted by:
 - * <u>CLEO</u> e⁺e⁻ —> $h_c \pi^+ \pi^-$ at a rate compatible to e⁺e⁻ —> $J/\psi \pi^+ \pi^-$ in data above open charm threshold (unexpected due to the fact that the production of h_c requires a c-spin flip, while J/ψ does not)
 - * anomalously large rates for e⁺e⁻ -> Υ (nS) π ⁺ π ⁻ at Υ (5S) energy

BABAR Coll. PRD 84 (2011) 112007 Belle Coll. PRL 108 (2012) 032001

* inclusive search in the recoiling mass against $\pi^+\pi^-$:

BABAR Coll. PRD 84 (2011) 112007 Belle Coll. PRL 108 (2012) 032001

- Following a similar approach: <u>Belle</u> (2015) first observation of the transition $\Upsilon(4S) \longrightarrow \eta h_b(1P)$
- Analysis of the η missing mass spectrum:

TABLE III. Summary of the results of the searches for $\Upsilon(4S) \to \eta h_b(1P)$ and $h_b(1P) \to \gamma \eta_b(1S)$.

/ / /	/ / / / /		
Observable	Value		
$\mathbb{B}[\Upsilon(4S) \to \eta h_b(1P)]$	$(2.18 \pm 0.11 \pm 0.18) \times 10^{-3}$		
$\mathcal{B}[h_b(1P) \to \gamma \eta_b(1S)]$	$(56 \pm 8 \pm 4)\%$		
$M_{h_b(1P)}$	$(9899.3 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$		
$M_{\eta_b(1S)} - M_{h_b(1P)}$	$(-498.6 \pm 1.7 \pm 1.2) \text{ MeV}/c^2$		
$\Gamma_{\eta_b(1S)}$	$(8^{+6}_{-5} \pm 5) \text{ MeV}/c^2$		
$M_{\eta_b(1S)}$	$(9400.7 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$		
$\Delta M_{\mathrm{H}F}(1S)$	$(+59.6 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$		
$\Delta M_{\mathrm{H}F}(1P)$	$(+0.6 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$		

Measurement of the h_b(1P) and $\eta_b(1S)$ resonance parameters, via $h_b(1P) -> \gamma \eta_b(1S)$

Hyperfine mass splitting

- Hyperfine mass-splitting of singlet-triplet states related to the spin structure of the resonances
- * A discrepancy of $>3\sigma$ for the 1S-HF splitting between measurements from E1 and M1 transitions

Accessing the D-wave states

Accessing the D-wave states

- * CLEO (2004) $\Upsilon(1^3D_2)$ observed one single member of the D-wave triplet, using the decay to 2 γ . Corresponding to mass and BR expected by theoretical predictions, but not able to experimentally verify the quantum numbers assignment
- * BABAR (2010) observation of $\Upsilon(3S)$ —> $\gamma \gamma \Upsilon(1^3D_2)$, $\Upsilon(1^3D_2)$ —> $\pi^+\pi^-\Upsilon(1S)$ with $\Upsilon(1S)$ leptonically decaying
- * An intermediate $\chi_{bJ}(2P)$ state is produced between the radiation of the two γ —> pattern of energies used to reject bkg
- * 5.8σ significance
- * quantum numbers determined by studying the $\pi^+\pi^-$ mass distribution after bkg subtraction —> compatible with D-wave hypothesis
- D-wave triplet still unresolved

CLEO Coll. PRD 70 (2004) 032001 BABAR Coll. PRD 82 (2010) 111102

Belle Coll. preliminary @DIS2014

Accessing the D-wave states

Investigations on the Y(1D) triplet

• Not resolving the $\Upsilon(1D)$ triplet (resolution ~mass splitting)

$$\mathcal{F}_{1D} = rac{N_{1D}}{1 + f_1 + f_3} \cdot \left[\mathcal{C}_2(m_2) + f_1 \mathcal{C}_1(m_1) + f_3 \mathcal{C}_3(m_3) \right]$$

- Signal in MM($\gamma\gamma$): 3 Crystal Ball functions, with free relative fractions f_1 , f_3 that are precisely predicted in: Wang et al. PRD 94 (2016) 094039
- m_2 fixed to world average, ΔM_{ij} fixed to different values between 3 and 15 MeV/ c^2 (reasonable according to calculations and observations)
- Values returned by the fit in any of these configurations are compatible with 0
- 90% CL ULs on f_1 , f_3 as a function of ΔM_{12} and ΔM_{23}
- f_1 favored value excluded in 3 regions where $10 < \Delta M_{12} < 13 \text{ MeV/c}^2$

NEW!

Accessing the D-wave states

- * Predicted enhancement of $\Upsilon(1D)$ —> $\eta \Upsilon(1S)$ with respect to $\Upsilon(1D)$ —> $\pi^+\pi^-\Upsilon(1S)$ due to a contribution of the anomaly in the flavour singlet axial current in QCD (Voloshin, 2003)
- * Look at this possible transition in Belle data at the $\Upsilon(4S)$ —> challenge to observe $\Upsilon(1D)$

no significant indication

Voloshin Phys. Lett. B 562, 68 (2003) E.G. et al [Belle Coll.] Phys. Rev. D96, 052005 (2017)

Towards the Zb's

* Anomalous rate of $\Upsilon(5S) \longrightarrow \pi^+\pi^-\Upsilon(1S,2S)$, <u>Belle</u> (2008)

Belle Coll. PRL 100 (2008) 112001

Process	$\Gamma_{ m total}$	$\Gamma_{e^+e^-}$	$\Gamma_{\Upsilon(1S)\pi^+\pi^-}$
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$		0.612 keV	$0.0060~\mathrm{MeV}$
$\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$			$0.0009~\mathrm{MeV}$
$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	$20.5~\mathrm{MeV}$	0.272 keV	$0.0019~{ m MeV}$
$\Upsilon(10860) \to \Upsilon(1S)\pi^+\pi^-$	$110~{ m MeV}$	$0.31~\mathrm{keV}$	$0.59~{ m MeV}$

Towards the Zb's

* Anomalous rate of $\Upsilon(5S) \longrightarrow \pi^+\pi^-\Upsilon(1S,2S)$, Belle (2008)

Belle Coll. PRL 100 (2008) 112001

- * + anomalous rate of $\Upsilon(5S) \longrightarrow \pi^+\pi^-h_b(1P,2P)$, that led to h_b discovery, <u>Belle</u> (2012)
- magnitude comparable to
 Υ(5S)—>Υ(nS) dipion transitions
 (despite involving a spin flip)
 —> exotic mechanism

Belle Coll. PRL 108 (2012) 032001

The Zb's

Decays are mediated by two narrow structures:

Belle Coll. PRL 108 (2012) 032001 Belle Coll. PRD 91 (2015) 072003

The Zb's

- * Decays are mediated by two narrow structures:
- * 5 decay channels ($\Upsilon(3S,2S,1S)$) and h_b(2P,1P)), similar production rates for the 2 resonances
- * $J^P = 1^+$ favored for both the resonances
- Minimal quark content is a four-quark combination
- * Masses a few MeV/c² above the thresholds of the open-bottom channels B*B and B*B* —> suggesting a 'molecular' interpretation, but other possibilities are still open

Belle Coll. PRL 108 (2012) 032001 Belle Coll. PRD 91 (2015) 072003

Z_b's from above the Y(5S)?

* Are the Z_b's accessible even from higher energies?

Belle Coll. PRL 117 (2016) 142001

* Study of e⁺e⁻ —>h_b(1P,2P) $\pi^+\pi^-$ in the Belle energy scan above the $\Upsilon(4S)$

Another exotic: Y_b(10890)?

- * Belle (2010) analysis of data scan around the $\Upsilon(5S)=\Upsilon(10860)$ energy
- * 8.1 fb⁻¹ in the range [10.83; 11.02] GeV/c²
- * Energy-dependent measurement of the $e^+e^- \longrightarrow \Upsilon(nS) \pi^+\pi^-$ cross section
- Peak at (10888+2.7-2.6±1.2) MeV with a 30-MeV width
- * This peak differs substantially from the observed maximum in the overall hadronic cross section
- —> suggesting that may not be due to $\Upsilon(5S)$ but some exotic state (hidden-beauty counterpart of $\Upsilon(4260)$ in charmonium?)

Belle Coll. PRD 82 (2010) 091106(R)

Not only new resonances...

- * Important informations on bottomonium given not only by the discovery of new resonances, but also by the **study of transitions** between its states
- * These transitions can be predicted by effective potential models, rather well established in the case of the dominant radiative transitions
- * Some puzzling features, in particular in the 2-body hadronic transitions (η , π^0)
- * In quarkonia below threshold, should be explained by **QCDME** (analogy with the QED multiple expansion) in terms of momentum of the emitted gluons
- Gluons emitted in pairs, either E1 (no spin-flipping) or
 M1 (spin-flipping)
- * Expectations:
 - * suppression of spin-flipping transitions (i.e. mS—> η nS wrt mS—> $\pi^+\pi^-$ nS, and mS—> $\pi^+\pi^-$ nP wrt mS—> $\pi^+\pi^-$ nS)
 - * further suppression of isospin-violating transitions (i.e. mS—> π^0 nS wrt others)

Transition	CLEO	Year	BABAR	Year	Belle	Year
Υ(4S) —>ηΥ(1S)	-		1.96±0.26±0.09	2008	1.70±0.23±0.08 [EG]	2017
Υ(3S) —>ηΥ(1S)	<1.8 (*)	2008	<1.0 (*) [EG]	2011	_	
Υ(2S) —>ηΥ(1S)	2.1 ^{+0.7} -0.6±0.3	2008	2.39±0.31±0.14 [EG]	2011	3.57±0.25±0.21	2013
$\Upsilon(4S)$ —> $\eta h_b(1P)$	-		-		21.8±1.1±1.8	2015

BABAR Coll. PRD 78 (2008) 112002

CLEO Coll. PRL 101 (2008) 192001

BABAR Coll. PRD 84 (2011) 092003

Belle Coll. PRL 115 (2015) 142001

E.G. et al [Belle Coll.] Phys. Rev. D96 (2017) 052005

[in units of 10-4]

Transition	CLEO	Year	BABAR	Year	Belle	Year
Υ(4S) —>ηΥ(1S)	-		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
$\Upsilon(3S) \longrightarrow \eta \Upsilon(1S)$		200			dipion transitio = (0.81±0.06)	
Υ(2S) —>ηΥ(1S)		-	→ no spin-fl	ipping :	suppression, contraction, contr	_
Υ(4S) —>ηh _b (1P)					21.8±1.1±1.8	2015

BABAR Coll. PRD 78 (2008) 112002

E.G. et al [Belle Coll.] Phys. Rev. D96 (2017) 052005

[in units of 10-4]

Transition	CLEO	Year	BABAR	Year	Belle	Year
Υ(4S) —>ηΥ(1S)	-		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
Υ(3S) —>ηΥ(1S)	<1.8 (*)	2008	<1.0			
Υ(2S) —>ηΥ(1S)	2.1 ^{+0.7} -0.6±0.3	2008	2.39±0.31±0.14	2011	3.57±0.25±0.21	2013
Υ(4S) —>ηh _b (1P)	~2	times	smaller than th	<u>ieoretica</u>	al prediction!	2015

CLEO Coll. PRL 101 (2008) 192001

BABAR Coll. PRD 84 (2011) 092003 Belle Coll. PRL 115 (2015) 142001 [in units of 10-4]

Transition	CLEO	Year	BABAR	Year	Belle	Year
Υ(4S) —>ηΥ(1S)	- -		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
$\Upsilon(3S)$ —> $\eta\Upsilon(1S)$	<1.8 (*)	2008	<1.0 (*)	2011	-	
Υ(2S) —>1			erved! l evidence for		3.57±0.25±0.21	2013
			(7.4±2.2±1.4) retical predi		21.8±1.1±1.8	2015

[in units of 10-4]

CLEO Coll. PRL 101 (2008) 192001 BABAR Coll. PRD 84 (2011) 092003

Transition	CLEO	Year	BABAR	Year	Belle	Year
Υ(4S) —>ηΥ(1S)	_		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
Υ(3S) —>ηΥ(1S)	the larg	est no	n-BB transition	from th	e Y(4S)!	
Υ(2S) —>ηΥ(1S)		n agr	eement with p	redicti		2013
$\Upsilon(4S)$ —> $\eta h_b(1P)$	-		-		21.8±1.1±1.8	2015

[in units of 10-4]

Belle Coll. PRL 115 (2015) 142001

η transitions from Y(5S)

• Dipion transitions from $\Upsilon(5S)$ enhanced due to the Z_b 's...

Transition	Belle	Year
$\Upsilon(5S)$ —> $\pi\pi\Upsilon(1S)$	5.3±0.6	2008
$\Upsilon(5S) \longrightarrow \pi\pi\Upsilon(2S)$	7.8±1.3	2008
$\Upsilon(5S)$ —> $\pi\pi h_b(1P)$	3.5+1.0-1.3	2012
$\Upsilon(5S)$ —> $\pi\pi h_b(2P)$	5.7 ^{+1.7} -2.1	2012

Belle Coll. PRL 100 (2008) 112001 Belle Coll. PRL 108 (2012) 032001

[in units of <u>10-3</u>]

η transitions from Y(5S)

• Dipion transitions from $\Upsilon(5S)$ enhanced due to the Z_b 's...

	Belle Coll.	PRL	100	(2008)	112001
S. C. September	Belle Coll.	PRL	108	(2012)	032001

Transition	Belle	Year
$\Upsilon(5S)$ —> $\pi\pi\Upsilon(1S)$	5.3±0.6	2008
$\Upsilon(5S)$ —> $\pi\pi\Upsilon(2S)$	7.8±1.3	2008
$\Upsilon(5S)$ —> $\pi\pi h_b(1P)$	3.5+1.0-1.3	2012
$\Upsilon(5S) \longrightarrow \pi \pi h_b(2P)$	5.7+1.7-2.1	2012

• ...but η transitions are NOT suppressed!

• Observation of $\Upsilon(5S)$ —> $\eta \Upsilon(1D)$!

Belle Coll. preliminary @LaThuile2012 Belle Coll. preliminary @DIS2014

	Deire Com 11t2 100 (2012) 002001
in units of 10-3]	(*) ULs are at 90% CL

Transition	Belle	Year
Υ(5S) —>ηΥ(1S)	0.73±0.16±0.8	2012 (prel.)
Υ(5S) —>ηΥ(2S)	2.1±0.7±0.3	2014 (prel.)
$\Upsilon(5S)$ —> $\eta h_b(1P)$	<3.3 (*)	2014 (prel.)
$\Upsilon(5S)$ —> $\eta h_b(2P)$	<3.7 (*)	2014 (prel.)
Υ(5S) —>ηΥ(1D)	2.8±0.7±0.4	2014 (prel.)

A quick-view summary

A quick-view summary

Resonant contributions to dipion transitions

- Clear dip just below 1GeV
 (never seen before)
- * Similar to what observed in Belle 5S analysis

Belle Coll. PRD 79 (2009) 051103 BABAR Coll. PRL 96 (2006) 232001

- * Indications for $f_0(980)$ at 2.8 σ
- More data needed for a refined Dalitz analysis and study of other contributions
- * First time this behaviour is seen in 4S transitions

Preliminary conclusions

- * An incomplete summary of the heritage of the 1st generation of B-factories in the bottomonium physics field
 - * A lot of achievements
 - * A lot of open items for theoretical speculation but also for further experimental investigation
- * Promising territory for the next B-factory as well!

The Belle II experiment

Belle II Detector 750 collaborators, 101 institutes, 24 nations]

Belle II TDR, arXiv: 1011.0352

KL and muon detector

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter

CsI(TI), waveform sampling electronics (barrel) Pure CsI + waveform sampling (end-caps) later

electrons (7GeV)

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward) Fake rate >2 x lower than in Belle

Vertex Detector

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

Central Drift Chamber

Smaller cell size, long lever arm

positrons (4GeV)

The Belle II experiment

- * Bottomonium physics program highly demands for data to be collected at the Y(3S) and Y(5S,6S)
- * Option of collecting data @Y(6S) in Phase 2: tough because at the very limit of the machine
- Competition with LHCb is quite pressing
- * Even in Phase 3, the fraction of Y(4S) data collected is a delicate matter of discussion

* η_b(1S) mass discrepancy between E1-M1 transitions measurements: lineshape factor? improvement in M1 photon resolution (converted photons techniques, already used by BaBar (2011))

- * η_b(1S) mass discrepancy between E1-M1 transitions measurements: lineshape factor? improvement in M1 photon resolution (converted photons techniques, already used by BaBar (2011))
- * $\eta_b(2S)$ measured only once: M1 transitions to it?

- * η_b(1S) mass discrepancy between E1-M1 transitions measurements: lineshape factor? improvement in M1 photon resolution (converted photons techniques, already used by BaBar (2011))
- * $\eta_b(2S)$ measured only once: M1 transitions to it?
- * Missing states: $\eta_b(3S)$, $h_b(3P)$

- * η_b(1S) mass discrepancy between E1-M1 transitions measurements: lineshape factor? improvement in M1 photon resolution (converted photons techniques, already used by BaBar (2011))
- * $\eta_b(2S)$ measured only once: M1 transitions to it?
- * Missing states: $\eta_b(3S)$, $h_b(3P)$
- * Missing states: **D-waves**. Expected narrow widths, dominant radiative decays to χ_{bJ}

- * η_b(1S) mass discrepancy between E1-M1 transitions measurements: lineshape factor? improvement in M1 photon resolution (converted photons techniques, already used by BaBar (2011))
- * $\eta_b(2S)$ measured only once: M1 transitions to it?
- * Missing states: $\eta_b(3S)$, $h_b(3P)$
- * Missing states: **D-waves**. Expected narrow widths, dominant radiative decays to χ_{bJ}
- * Hadronic transitions still not well understood, and spin-flipping transitions below/above threshold to be interpreted: high statistics study compelling for feeding theoretical speculation

- * η_b(1S) mass discrepancy between E1-M1 transitions measurements: lineshape factor? improvement in M1 photon resolution (converted photons techniques, already used by BaBar (2011))
- * $\eta_b(2S)$ measured only once: M1 transitions to it?
- * Missing states: $\eta_b(3S)$, $h_b(3P)$
- * Missing states: **D-waves**. Expected narrow widths, dominant radiative decays to χ_{bJ}
- * Hadronic transitions still not well understood, and spin-flipping transitions below/above threshold to be interpreted: high statistics study compelling for feeding theoretical speculation
- * Exotica: others apart from Z_b 's? if so, probably accessible from data taking at higher energies. Testing tetraquark/molecular nature of Z_b 's

Bottomonium physics @ Y(6S)

• Important results, through some golden modes based on a possibly **unique data sample** to be collected at the **Y(6S)** energy

- $\Upsilon(6S) \rightarrow \pi Z_b$, $Z_b \rightarrow \pi h_b(nP)$
 - not sufficienct statistics at Belle to clearly separate the Z_b contribution
 - possibility for a data acquisition at the $\Upsilon(6S)$ energy during Phase 2 (2018)
 - according to MC studies, separation is possible already with 10 fb⁻¹ of data

Bottomonium physics @ Y(6S)

• Important results, through some golden modes based on a possibly **unique data sample** to be collected at the **Y(6S)** energy

• η transitions from $\Upsilon(6S)$

- could be used to access missing states below $B\overline{B}$ threshold (in particular Y(2D) triplet)
- heavy quark spin symmetry violating —> comparison with QCD multipole expansion calculations
- results with 50 fb⁻¹, but more statistics will be needed for Y(2D) discovery

from similar transitions from Y(5S), it is reasonable to expect cross-sections $< 1500 \ \mathrm{fb}$

Summary

- * Bottomonium physics has been one of the main successes achieved by the first generation of B-factories
 - * Discovery of long-awaited resonances
 - * Open room for exotic states
 - Puzzling hadronic transitions between states below and above threshold
- A fertile field also for Belle II!

Backup

Analogy with \(\eta_c \) lineshape?

- * <u>CLEO</u> (2009) observed a distortion in the η_c line shape due to the photon-energy dependence of the magnetic dipole transition rate (J/ ψ —> γ η_c and ψ (2S) —> γ η_c)
- * Background that decreases with E(γ) from J/ψ —> X_i , where a spurious cluster is found in the calorimeter + a rising background from both J/ψ —> $\pi^0 X_i$ and non-signal J/ψ —> γX_i
- * Taking into account this, a mass value (2982.2±0.6 MeV/c²) compatible with the result from $\gamma\gamma$ fusion and $p\bar{p}$ annihilation; without ~7 MeV lower
- * A similar factor for η_b ?

CLEO Coll. PRL 102 (2009) 011801 Erratum ibid. 106 (2011) 159903

Search for Z_b⁰

* If molecular interpretation, search for a 'natural' neutral partners of $Z_{b^{\pm}}$ in $\Upsilon(10860)$ —> $\Upsilon(nS)\pi^0\pi^0$ decays, with $\Upsilon(nS)$ going to leptons

- * $Z_{b}^{0}(10610)$: 6.5 σ (4.9 σ from Υ (2S) + 4.3 σ from Υ (3S))
- * $Z_{b^0}(10650)$: not observed, but not excluded

Belle Coll. PRD 88 (2013) 052016

More exotica?

- * X_b ? counterpart of X(3872), $J^{PC} = 1^{++}$
- Predicted in both tetraquark model and molecular interpretations
- Searched for in the $\Upsilon(5S)$ data sample, through $X_b \longrightarrow \omega \Upsilon(1S)$ decays (large isospin violation in $\pi^+\pi^-\Upsilon(1S)$)

Belle Coll. PRL 113 (2014) 142001

More statistics needed!

- * Similarly to e⁺e⁻ —> γX(3872) observation by BESIII at 4.26 GeV
- As a counterpart of X(3872)—> $\pi^+\pi^-$ J/ ψ

Possible solutions for hadronic transitions?

- Some very recent theoretical insights:
- * Eichten (<u>B2TIP meeting 2015</u>):
 - Above heavy flavor production threshold the usual QCDME fails (transitions rates much larger than expected, large SU(3) violations). New mechanisms for hadronic transitions required
 - light quarks dynamics should be factorized differently
- * Segovia et al. (<u>arXiv:1507.01607</u>):
 - Starting from the large rates of $\Upsilon(4S)$ —> $\eta h_b(1P)$ and $\Upsilon(4S)$ —> $\eta \Upsilon(1S)$
 - Same physical origin
 - Not negligible role by M1-M1 transitions and large L=0 hybrid mesons contributions
 - Normalizing to $\Upsilon(2S)$ transitions, good agreement with $\Upsilon(4S)$ measured rates. Not completely with $\Upsilon(3S)$ though...

Bottomonium @ Hadron colliders

* ATLAS:

- * Observation of a New χ_b State in Radiative Transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS, **PRL 108 (2012) 152001**
- * Search for the X_b and other hidden-beauty states in the $\pi^+\pi^-\Upsilon(1S)$ channel at ATLAS, **PLB 740 (2015) 199-217**

* CMS:

* Search for a new bottomonium state decaying to $\Upsilon(1S)$ $\pi^+\pi^-$ in pp collisions at sqrt(s) = 8 TeV, **PLB 727 (2013) 57**

* LHCb:

- * Study of χ_b meson production in pp collisions at sqrt(s) = 7 and 8 TeV and observation of the decay $\chi_b(3P)$ —> $\Upsilon(3S)\chi$, **EPJ C74 (2014) 3092**
- * Measurement of the fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays in pp collisions at sqrt(s) = 7 TeV, **JHEP 11 (2012) 031**

* D0:

* Observation of a narrow mass state decaying into $\Upsilon(1S)+\gamma$ in pp collisions at sqrt(s)=1.96 TeV, PRD 86 (2012) 031103

π⁰ transitions: experimental status

Transition	CLEO	Year	BABAR	Year	Belle	Year
$\Upsilon(3S)$ —> $\pi^0 h_b(1P)$	-		7.4±2.2±1.4	2011b	-	
$\Upsilon(2S) \longrightarrow \pi^0 \Upsilon(1S)$	<1.8	2008	_		<0.41	2013

CLEO Coll. PRL 101 (2008) 192001 BABAR Coll. PRD 84 (2011) 112007 Belle Coll. PRD 87, 011104(R) (2013)

SuperKEKB The next generation B-factory

Super-KEKB: energy and limitations

- Super-KEKB is an accumulation ring
 - The acceleration stage is done in the LINAC
 - * RF only to sustain the beams (with continuous injection)
- * Current max $E_{CM} \sim 11.02 \text{ GeV}$ (slightly above Y(6S))
- * Max E_{CM} achievable upon J-arc upgrade $E_{CM}\sim11.24$ GeV (at $\Lambda_b\Lambda_b$ threshold)

Time-of-Propagation Cherenkov Detector

