What gravitational waves can tell us about Cosmology?

Nicola Bartolo

Department of Physics and Astronomy, ``G. Galilei'', University of Padova INFN-Padova, INAF-OAPD

In collaboration with Michele Liguori & Sabino Matarrese

Outline

- Cosmological implications of GW170817: constraints on the speed of GWs and H₀
- Prospects for the future: the birth of a new branch in cosmology?
- Conclusions

GW170817: implications for Dark Energy

$$\mathcal{L}_{2} = c_{2}X, \qquad \mathcal{L}_{3} = 2\frac{c_{3}}{M^{3}}X\Box\phi$$

$$\mathcal{L}_{4} = \left(\frac{M_{p}^{2}}{2} + \frac{c_{4}}{M^{6}}X^{2}\right)R + 2\frac{c_{4}}{M^{6}}X\left[(\Box\phi)^{2} - (\nabla_{\mu}\nabla_{\nu}\phi)^{2}\right]$$

$$\mathcal{L}_{5} = \frac{c_{5}}{M^{9}}X^{2}G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi - \frac{1}{3}\frac{c_{5}}{M^{9}}X\left[(\Box\phi)^{3} - 3(\nabla_{\mu}\nabla_{\nu}\phi)^{2}\Box\phi + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

Dark Energy

The extremely strong constraint on the speed of GWs

$$-3 \cdot 10^{-15} \le c_g/c - 1 \le 6 \cdot 10^{-16}$$

has already ruled out many classes of modified gravity models

which have been proposed in the past years to explain the present acceleration of the universe.

GWs are tensor perturbations of the metric. In cosmology: describe their evolution over a flat Friedmann-Robertson-Walker background (disregarding scalar and vector modes)

ds²=- dt² + a²(t) [(
$$\delta_{ij}$$
 + h_{ij}(\underline{x} , τ)) dxⁱ dx^j]

where h_{ij} are tensor modes which have the following properties $h_{ij} = h_{ji}$ (symmetric) $h^{i}_{i} = 0$ (traceless)

hⁱ_{j|i}= 0 (transverse)

$$\ddot{h}_{ij} + (3 + \alpha_M)H\dot{h}_{ij} + (1 + \alpha_T)k^2h_{ij} = 0$$

$$\alpha_T = c_g^2 - 1$$

GWs: many models of modified gravity ruled out!

$c_g = c$			$c_g \neq c$		
Horndeski	General Relativity quintessence/k-essence [42] Brans-Dicke/ $f(R)$ [43, 44] Kinetic Gravity Braiding [46]		quartic/quintic Galileons [13, 14] Fab Four [15, 16] de Sitter Horndeski [45] $G_{\mu\nu}\phi^{\mu}\phi^{\nu}$ [47], Gauss-Bonnet		
beyond H.	Derivative Conformal (20) [18] Disformal Tuning (22) DHOST with $A_1 = 0$		quartic/quintic GLPV [19] DHOST [20, 48] with $A_1 \neq 0$		
	Viable after GW170817		Non-viable after GW170817 Also ruled out by GW170817: - Vector Dark Energy		

See, e.g., Ezquiaga & Zumalacarregui '17

Creminelli & Vernizzi '17

Baker et al. '17

- Einstein Aether theories
- TeVeS
- MOND-like theories
- some sectors of Horava gravity
- Generalized PROCA theories

> An example: Galileon models

$$S_H = \int d^4x \sqrt{-g} \mathcal{L}_H = \int d^4x \sqrt{-g} \sum_{n=0}^3 \mathcal{L}_n$$

$$\mathcal{L}_{2} = c_{2}X, \qquad \mathcal{L}_{3} = 2\frac{c_{3}}{M^{3}}X\Box\phi$$

$$\mathcal{L}_{4} = \left(\frac{M_{p}^{2}}{2} + \frac{c_{4}}{M^{6}}X^{2}\right)R + 2\frac{c_{4}}{M^{6}}X\left[(\Box\phi)^{2} - (\nabla_{\mu}\nabla_{\nu}\phi)^{2}\right]$$

$$\mathcal{L}_{5} = \frac{c_{5}}{M^{9}}X^{2}G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi - \frac{1}{3}\frac{c_{5}}{M^{9}}X\left[(\Box\phi)^{3} - 3(\nabla_{\mu}\nabla_{\nu}\phi)^{2}\Box\phi + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

 $X = -1/2
abla \mu \varphi
abla^{\mu} \varphi^{\mu}$

- these models provide self-accelerating solutions at late time (i.e. no need to put by hand a cosmological constant)
- non-linear derivative interactions:
 - allow for self-acceleration
 - allow for so called screening mechanism
- enjoy stability properties (no ghosts, coefficients of the action protected from quantum corrections)
- compatible with data until last week.....
 (in fact, able to relieve the tension on H_o)

An example: Galileon models

$$\mathcal{L}_{2} = c_{2}X, \qquad \mathcal{L}_{3} = 2\frac{c_{3}}{M^{3}}X\Box\phi$$

$$\mathcal{L}_{4} = \left(\frac{M_{p}^{2}}{2} + \frac{c_{4}}{M^{6}}X^{2}\right)R + 2\frac{c_{4}}{M^{6}}X\left[(\Box\phi)^{2} - (\nabla_{\mu}\nabla_{\nu}\phi)^{2}\right]$$

$$\mathcal{L}_{5} = \frac{c_{5}}{M^{9}}X^{2}G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi - \frac{1}{3}\frac{c_{5}}{M^{9}}X\left[(\Box\phi)^{3} - 3(\nabla_{\mu}\nabla_{\nu}\phi)^{2}\Box\phi + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

$$c_{g} \neq 1$$

An example: Galileon models

Exploiting CMB and LSS data

But.....Cubic Galileon is ruled out at more than 7σ by the ISW-LSS cross-correlation

Integrated Sachs-Wolfe effect (ISW)

Evolution of Large-Scale-Structures (LSS)

$$-k^2\Phi = -4\pi G a^2 \rho \,\delta$$

Renk et al. '17.

An example: Galileon models

A clear example of multimessenger physics

Measurements of H₀

$$H_0 = 70.0^{+12.0}_{-8.0} \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$$
 from GW170817

- How this compares with the present direct measurements and with measurements from CMB?
- ➢ Why it would be important to increase the precision of measurements of H₀ from GWs?

**N.B.: this is not a Planck tension, this is a tension between CMB inferred value of H₀ and late-time cosmology.

The values measured by Planck and WMAP are fully consistent

- $H_0 = 69.7 \pm 2.1$ wmap
- $H_0 = 68.1 \pm 0.7$ WMAP9+BAO (BOSSDR11+6dFGS+Lyman α)+high-z SNIa; 2.7 σ tension (Aubourg+ 2015)
- $H_0 = 69.3 \pm 0.7$ WMAP9+ACT+SPT + BAO (BOSSDR11+6dFGS) 1.9 σ tension (Bennet+ 2014)

Measurements of H₀

this tension might indicate either the presence of some systematics or new physics

 in any case, such a tension is a clear indication that we are living in a precision cosmology epoch, and because of that we are moving towards an epoch of "accuracy" cosmology

Direct measurements of H₀

Luminosity distance:

$$d_L(z) = c (1+z) \int_0^z \frac{1}{H(z')} dz'$$

> For low redshifts z<<1: $D_L(z) \approx c \, z/H_0$

For higher redshifts z> 1: D_L(z) depends the evolution of H(z) and hence on cosmological parameters like Ω_m and the equation state parameters, dark energy evolution.

H₀ measurements from CMB

Acoustic oscillations of CMB photons+baryons at last scattering z~1100: *acoustic scale* ϑ_* $\theta_* = (1.04148 \pm 0.00066) \times 10^{-2} = 0.596724^{\circ} \pm 0.00038^{\circ}$

$$d_L(z) = c (1+z) \int_0^z \frac{1}{H(z')} dz'$$

- The measured GW waveform depends directly on the luminosity distance of the source
- If subsequent electromagnetic observations are able to identify an EM counterpart, then one is able to obtain a measure of the source redshift and thus a point in the distance-redshift space.
- One can map out the universe expansion history (H_0 , dark energy equation of state, $\Omega_{CDM,} \Omega_{DE}$).

$$d_L(z) = c (1+z) \int_0^z \frac{1}{H(z')} dz'$$

- no calibration needed (the only calibration needed is the assumption that general relativity describes the binary system)
 - → no need to construct a distance ladder!
- different systematics w.r.t to
 CMB and local direct
 measurements (e.g. SNIa)
- A % precision is needed to help in fixing the tension

(almost ~50 events of neutron star binaries to have a 2.5% precision, Guidorzi et al. '17)

Prospects for the (near?) future......

Nissanke et al. 2013

- Of course the error on H₀ depends critically on number of events and hence, among various factors, merging-rate, sensitivity and number of GW interferometers in networl
- The timescale to reach % precision on H₀ depends critically on the precise merging rate $(1.5^{+3.2}_{-1.2})\times10^{-6}{\rm Mpc}^{-3}{\rm yr}^{-1}$

in the optimistic case a ~4.2 % precision with third run?? (e.g., Seto & Kyutoku '17)

Prospects for the future

The future is bright! Many new ideas and observational constraints on many diverse cosmological issues.

Here I just mention a list, focusing on some details for a couple of examples

- Precision cosmology on standard cosmological parameters (e.g., H_0 , Ω_m , the equation state parameter, dark energy evolution, ...)
- Tests on GR and modified gravity models
- Tests of fundamental physics (equivalence principle, tests of parity violation,.....)
- Impact of cosmological Large-Scale Structures on GW sources

 → inference of lensing convergence and growth of structures from GW standard sirens
- Primordial non-Gaussianity from inflation
- Black holes as dark matter
- Gravitational waves from inflation

And futuristic prospects.....ultra-high precision cosmology!

e.g.: with BBO (Big-Bang Observer) a 0.1% accurate determination of H_0

Anisotropies of GW standard sirens

• exploit *clustering of NS binaries* due to the underlying cosmological gravitational potential fluctuations

- LSS also induces gravitational lensing
 → Luminosity distance is modified
- This would be a method that does not require redshift information (i.e. an EM counterpat)!

Namikawa+, 2016 (see also: Bertacca, Raccanelli, N.B., Matarrese '17, Laguna et al. 09; Contaldi '16; Dai et al. '16; Bonvin et al. '16 for related issues).

Cosmological applications:

- e.g., primordial non-Gaussianity, can reach f_{NL=}0.5!! (now Planck error is 5.7)
- Cross-correlation with other cosmological probes (CMB lensing and weak lensing of LSS galaxy surveys)

Primordial GWs from inflation

Inflation predicts a stochastic background of gravitational waves, a smoking-gun of inflation: they are the result of quantum mechanical fluctuations of the metric

$$\mathcal{P}_T(k) = A_T \left(\frac{k}{k_*}\right)^{n_{\mathrm{T}}} \qquad r = \frac{\mathcal{P}_T(k_*)}{\mathcal{P}_{\zeta}(k_*)}$$

Data from interferometers have already provided useful constraints.

SYNERGY BETWEEN CMB AND INTERFEROMETERS

From M.C. Guzzetti, N.B., M. Liguori, S. Matarrese, ``Gravitational waves from Inflation", arXiv:1605.01615

The nature or primordial GWs

GW PRODUCTION	Discriminant	Specific discriminant	Examples of specific models	Produced GW
Vacuum oscillations	theory of gravity	Conoral Rolativity	single-field slow-roll	broad spectrum
quantum fluctuations		General Relativity	all other models in GR	broad spectrum
of the gravitational field stretched by the			G-Inflation	broad spectrum
accelerated expansion		MG/EFT approach	Potential-driven G-Inflation	broad spectrum
			EFT approach	broad spectrum
	source term	vacuum inflaton fluctuations	all models	broad spectrum
Classical production		fluctuations of extra scalar	inflaton+spectator fields	broad spectrum
F F F F F F F F F F F F F F F F F F F		fields	curvaton	broad spectrum
second-order GW generated by the		gauge particle production	pseudoscalar inflaton+gauge field	broad spectrum
presence of a source term in GW equation		gauge particle production	scalar infl.+pseudoscalar+gauge	broad spectrum
of motion		scalar particle production	scalar inflaton+ scalar field	peaked
		particle production during	chaotic inflation	peaked
		preheating	hybrid inflation	peaked

From M.C Guzzetti, N.B., M. Liguori, S. Matarrese, ``Gravitational waves from Inflation'', arXiv:1605.01615

- ✓ A detection of GW would not by itself determine the precise mechanism generating the the tensor modes
- In addition to the standard quantum vacuum amplification of tensor perturbations on cosmological scales various mechanisms exist that produce during inflation (or immediately after inflation) a <u>classical background</u> <u>of gravitational waves.</u>
- <u>Case studies have been proposed in ``Science with the space-based interferometer LISA. IV: Probing inflation</u> <u>with gravitational waves''</u>, N.B., C. Caprini, V. Domcke, D. Figueroa, J. Garcia-Bellido, M. C. Guzzetti. et al. (including M.Liguori & S. Matarrese)

Conclusions

- A new era of gravitational wave astronomy (and multimessenger physics) has just started!
- The consequences of GW170817 for cosmology are (up to now) impressive: different classes of modified gravity models (proposed as dark energy) have been ruled out in just one day!
- Improving the precision on H₀ using standard sirens can be very interesting to better understand the present (slight) tension on H₀ measurements.
- **The future is bright:** a new branch of high-precision cosmology might start, with very exciting new ideas and new, alternative observables to investigate the universe, from low-redshift up the very first moments of the universe (inflation).

H₀ and Number of relativistic species

- Combining Planck TT with a gaussian prior 73 ± 1.8 Km/s/Mpc as from Riess+ 16, in LCDM+Neff model H₀ prior pushes Neff high, but
- Planck χ² worsens when combining with Riess both in LCDM and LCDM+Neff model, high Neff
- This is because for Planck alone, even in LCDM+Neff $H_0=68+-2.8$, i.e. the tension is still at the 2.4 σ level
- A modification of the early-time physics to include a component of dark radiation with an effective number of species N_{eff}~ 0.4 would reconcile the CMB-inferred constraints, and the local H₀ and standard ruler determinations. The inclusion of the "preliminary" high-l Planck CMB polarisation data disfavours this solution.