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GRB long/short divide
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BH-disk formation in a BNS merger
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Jets from BNS mergers?
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Magnetic field structure
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Product of BNS mergers

SMNS / HMNS .. ..or STABLE NS

BNS

BH + TORUS

BH + TORUS

prompt
collapse




Magnetar SGRB scenario

Swift revealed that most SGRBs are accompanied by
long-duration (~ 104 — 10° s) and high-luminosity
(10*® — 10°" erg/s) X-ray afterglows

total energy can be higher than the SGRB itself

hardly produced by BH-torus system - they suggest
ongoing energy injection from a long-lived NS
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X-ray emission —» spindown of a uniformly
rotating NS with a strong surface magnetic field
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PROBLEM OF THE MAGNETAR MODEL:

strong baryon pollution can choke the
formation of a relativistic jet

—> HARD TO EXPLAIN THE SGRB PROMPT EMISSION
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“Time-reversal’ scenario for SGRBs
Ciolfi & Siegel 2015
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Short GRB summary

take-home message:

the first coincident SGRB/BNS merger detection proves a long-standing
hypothesis and thus meets the expectations

.. but open questions remain on the central engine:

BH-disk or long-lived massive NS?

/N

future observations will shed light theoretical models will
by assessing the presence/absence clarify the mechanism to
of persistent X-ray emission produce a jet

a lot to do in the next years!



Merger ejecta and r-process
nucleosynthesis

ejecta in BNS and NS-BH mergers r-process

capture rate much faster than decay
more than one neutron capture at a time

requires very special conditions:

* High T (T > 10°K)
* High neutron density (n,> 1022 cm3)
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nucleosynthesis of heavy nuclei
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AB magnitude

Kilonova in GRBI130603B?
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optical rebrightening in GRB 130603B
tentatively interpreted as a kilonova

connection
SGRB «— BNS or NS-BH mergers

Tanvir et al. 2013, Berger et al. 2013
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GWI170817 Kilonova
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light curves and spectra are consistent with a kilonova!



Red and blue kilonovae

neutron-rich ejecta neutron-poor ejecta
low electron fraction Ye<0.2 high electron fraction Ye>0.2
strong r-process weak r-process
very heavy elements (A>140) not very heavy elements (A<140)
lanthanide-rich lanthanide-poor
higher opacity lower opacity
red to infrared, peak time ~| week blue, peak time ~| day
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Different ejecta components

[ tidal ejecta ] (shock-driven ejecta] [post-merger winds]

only on orbital plane mostly polar (along z) isotropic
cold and neutron-rich hot and neutron-poor wide range of Ye (0.1-0.4)
~~ ~ ~
red kilonova blue kilonova red and blue kilonova
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Kilonova summary

the optical/IR signal is fully consistent with being a kilonova
again, a proof of a long-standing hypothesis

ejecta mass estimates from present modelling

Blue KN ejecta (Amax < 140) = 0.01 — 0.02M;
~ 0041‘4()

Red KN ¢jecta (Apax 2 140) .
Light r-process yield (A < 140) =~ 0.05 — 0.06 M 32 \

Heavy r-process yield (A 2 140) ~ 0.01 Mg \\ |

Gold yield ~ 100 — 200Mg 2 S~ |

Uranium yield ~ 30 — 60Mgp | N~
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(from Metzger 2017)
Cowperthwaite et al. 2017

we need more events and better models to
grasp the details of such phenomenon..



BACKUP SLIDES



Off-axis SGRB and jet afterglows

® forward shock emission
(canonical afterglow)

- well studied for long GRBs
- X-rays, but also optical and radio

® off-axis emission: ® off-axis emission: cocoon emission

structured jet
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EM emission from the long-lived NS remnant

BNS merger

* spindown-powered transients studied

s only recently .. vyetal.2013

Metzger & Piro 2014
Siegel & Ciolfi 2016a,b

differentially rotating
NS remnant (Phase I}

* differentially rotating NS remnant
matter ejection as baryon-loaded wind
(neutrino- and/or magnetically-induced)

shock and PWN
(Phase [l1-111)

* uniformly rotating NS
dipole spindown radiation inflates a
photon-pair plasma nebula inside
ejecta cavity

* radiation reprocessed by the ejecta,
finally escaping

shocked
ejecta

* along the evolution, NS can collapse to BH
(if supramassive)
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EM emission from the long-lived NS remnant
Siegel & Ciolfi 2016a,b
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70, =03 ® signal peaks at 102-10% s (similar range for
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GWV detector network
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