R. Rando DFA - INFN PD

> GW counterparts with Fermi and Integral: the case of GRB170817A

DFA 25/10/2017

CREDITS!

Most of what I am showing for GRB170817A:

- E. Burns (Fermi-GBM),
- N. Omodei (Fermi-LAT),
- V. Savchenko (INTEGRAL)
- @ 2017 Fermi Symposium last week

Introduction to GRBs

- Gamma ray flashes from space
- Observed since the 60's
- Isotropic distribution: extragalactic
- Exceedingly energetic: beamed emission
- High energy: optically thin
- Long-duration afterglow, from X to radio
- Studied in detail in the 90's (BATSE on CGRO, Beppo-SAX)
 - → long & short

GRB: the standard model

FERMI GBM & LAT

GRB:

- 12 Nal scintillators (8 keV 1 MeV)
- 2 BGO scintillators (200 keV 30 MeV)
- Cover all non-occulted sky

LAT

- Pair-conversion tracker + CsI calorimeter
- >40 MeV ~2 TeV
- ~ 2.5 sr FOV

Almost overlapping energy range Transients:

- GBM can issue notices and request re-points
- >120 re-points to observe transients with LAT

GRBs: FERMI GBM

GRBs: FERMI's contributions

GRB090926A: additional spectral components Significant spectral evolution in time

Uncertainty above 100 MeV: cutoff?

Again from FERMI

GRB110721A (Axelsson et al.): Extreme initial peak energy: 15 MeV Additional thermal component Signature of the photosphere?

See also: GRB100724B (Guriec et al.)

GRB090820 (Burgess et al.)

Finally: GRB170817A

 (1.74 ± 0.05) s delay

GRB17017A

Triggered the GBM in <1 s
Alert issued: 14 s
Auto localization and classification ~25 s
Estimated significance > 8sigma
Public circular: ~ a few hours

- Main Peak (~0.5 s)
 - $E_{peak} = (185 \pm 62) \text{ keV}$
 - (3.1±0.7)x10⁻⁷ erg s⁻¹ cm⁻²
 - (1.8±0.4)x10-7 erg cm-2
- Soft Tail (~ s)
 - $k_BT = (10.3 \pm 1.5) \text{ keV}$
 - (0.5±0.1)-7 erg s-1 cm-2
 - $(0.6\pm0.1)^{-7}$ erg s⁻¹

In context

A fairly standard short GRB (no z info here)

Account for z: exceedingly dim

GRB170716A is 2 to 6 orders of magnitude less energetic than previously known SGRBs with firm redshifts

Why so dim?

Figure 5. The three potential jet viewing geometries and jet profiles that could explain the observed properties of GRB 170817A, as described by scenarios (i)–(iii) in Section 6.2.

Broad-band modeling appears to suggest an off-axis observation. Also see Covino et al. 2017 suggesting a low inclination angle due to a low degree of polarization

INTEGRAL

4 instruments:

- SPI (20 keV 8 MeV)
- IBIS (15 keV 10 MeV)
- JEM-X (3 35 keV)
- OMC (optical V band)

The SPI ACS is also used as an omni-directional

detector above ~75 keV

INTEGRAL: GRB170817A

IBIS: zero response at ~30° from axis

SPI: z.r. at \sim 30°

JEM-X: z.r. at \sim 13°

Event: ~32° from axis

3.9 sigma by ACS alone in one 0.1 s bin

First re-point, 19.5 hrs later (70 ks) in GBM area

Location was still uncertain, not good

New re-point 24 hrs later on AT2017gfo

Upper limits on emission

INTEGRAL & FERMI

Improve localization by triangulation using relative delay between INTEGRAL-ACS and FERMI-GBM (149 ms) GCN circular issued at t₀+6 h Halved GBM localization window

Spectrum from GBM compared with ACS response

IBIS: upper limit

FERMI LAT was "offline"

Given the different instrument requirements, the SAA definition for the LAT is slightly larger (14%) than the GBM one

At the time of the GW event (and GBM trigger), the LAT was in the SAA

We observe the entire region between $t_{\rm GW}$ +1153 – $t_{\rm GW}$ +2017 Upper bound (0.1–1 GeV): F < 4.5x10⁻¹⁰ erg cm⁻² s⁻¹ $L_{\rm iso}$ < 9.3x10⁴³ erg s⁻¹

What if?

In the middle of the GBM SGRB population:

- other 4 SGRBs of similar fluence have been detected by the LAT above 100 MeV Detectability of SGRBs depends on the off-axis angle
 - LAT can repoint within few hundreds of seconds

Estimated probability of detecting a GW-related GRB with the LAT: 5-10%

Fundamental physics

Speed of gravity

$$\Delta v = v_{\text{GW}} - v_{\text{EM}}$$

$$\Delta v / v_{\text{EM}} \approx v_{\text{EM}} \Delta t / D$$

$$-3 \times 10^{-15} \leq \frac{\Delta v}{v_{\text{EM}}} \leq +7 \times 10^{-16}$$

Assuming D = 26 Mpc (the lower bound on the 90% confidence interval for distance based on GW data alone, and bounding t between [-10, +1.74] s, where the -10 s is a reasonably conservative assumption.

Lorenz invariance

 Non-birefringent, non-dispersive limit mass dimension d=4; GW sector

Effective field theory

GW sectors

 $\Delta v = -\sum_{m} Y_{\ell m}(\hat{n}) \left(\frac{1}{2} (-1)^{1+\ell} \overline{s}_{\ell m}^{(4)} - c_{(I)\ell m}^{(4)} \right)$

Different group velocities in EM and

Table 1. Constraints on the dimensionless minimal gravity sector coefficients.

	ℓ	Previous	This Work	Coefficient	This Work	Previous
t;		Lower	Lower		Upper	Upper
	0	-3×10^{-14}	-2×10^{-14}	$\bar{s}_{00}^{(4)}$	5×10^{-15}	8×10^{-5}
	1	-1×10^{-13}	-3×10^{-14}	$\overline{s}_{10}^{(4)}$	7×10^{-15}	7×10^{-14}
		-8×10^{-14}	-1×10^{-14}	$-\text{Re } \overline{s}_{11}^{(4)}$	2×10^{-15}	8×10^{-14}
		-7×10^{-14}	-3×10^{-14}	Im $\bar{s}_{11}^{(4)}$	7×10^{-15}	9×10^{-14}
	2	-1×10^{-13}	-4×10^{-14}	$-\overline{s}_{20}^{(4)}$	8×10^{-15}	7×10^{-14}
		-7×10^{-14}	-1×10^{-14}	$-{\rm Re}\ \overline{s}_{21}^{(4)}$	2×10^{-15}	7×10^{-14}
		-5×10^{-14}	-4×10^{-14}	$\operatorname{Im} \overline{s}_{21}^{(4)}$	8×10^{-15}	8×10^{-14}
		-6×10^{-14}	-1×10^{-14}	Re $\bar{s}_{22}^{(4)}$	3×10^{-15}	8×10^{-14}
		-7×10^{-14}	-2×10^{-14}	$-{\rm Im} \ \overline{s}_{22}^{(4)}$	4×10^{-15}	7×10^{-14}

$$\delta t_{\rm S} = -\frac{1+\gamma}{c^3} \int_{\mathbf{r}_{\rm e}}^{\mathbf{r}_{\rm o}} U(\mathbf{r}(l)) dl$$

The bending and delay are proportional to γ -1, where the parameter γ is unity in general relativity but zero in the newtonian model of gravity. The quantity γ -1 measures the degree to which gravity is not a purely geometric effect and is affected by other fields.

 δt_s = Shapiro delay using the same time bounds

 $\mathbf{r_o}$ = observation position, $\mathbf{r_e}$ = emission position $U(\mathbf{r})$ = gravitational potential (here the Milky Way's)

l= wave path r= deviation from Finstein

 γ = deviation from Einstein-Maxwell theory (where γ_{EM} and γ_{GW} are both equal to 1)

$$-2.6 \times 10^{-7} \le \gamma_{\rm GW} - \gamma_{\rm EM} \le 1.2 \times 10^{-6}$$

The best absolute bound on $\gamma_{\rm EM}$ is $\gamma_{\rm EM} - 1 = (2.1 \pm 2.3) \times 10^{-5}$, from the measurement of the Shapiro delay (at radio wavelengths) with the Cassini spacecraft (Bertotti et al. 2003).

Conclusion

References:

FERMI:

- GBM: https://arxiv.org/abs/1710.05446
- LAT: https://arxiv.org/abs/1710.05450

INTEGRAL:

https://arxiv.org/abs/1710.05449

ALL:

https://arxiv.org/abs/1710.05834 (fundamental physics)