

Search for Mirror Neutron Oscillations

Prajwal T. Mohan Murthy MIT For NStar Collaboration

Overview

Bit of History

with B' = 0

with Finite B'

NStar

2 colloquium INFN Genoa Nov '17

Traditional Answer:

New CP Violating Term $-\theta$ to cancel CPV in strong sector

Parity violation in weak sector?

$$L_{\theta} = \frac{\alpha_s \, \theta}{8 \, \pi} G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$$

 d_n < 2.9 ×10⁻²⁶ e.cm (90%C.L.) θ < 10⁻¹⁰

Strong CP Problem

Solution in strong sector:

Promote the "Theta" term to a QCD field. This field undergoes symmetry breaking to give rise to QCD Axions.

Motivation PAUL SCHERRER

But Wait...

We can continue to live in the world where the QCD axion exists

But what if I told there need not be any global PV?

Morpheus: "This is your last chance. After this, there is no turning back. You take the blue pill—the story ends... You take the red pill—you stay in Wonderland, and I show you how deep the rabbit hole goes. Remember: all I'm offering is the truth. Nothing more."

Motivation PAUL SCHERRER

Enter Mirror Realm...

No! No! Not This...

PS: But kudos if you did...

<u>Non Traditional Answer:</u> <u>Introduce a mirror</u> realm No PV even in weak sector

Mirror Universe

$$\mathcal{L}_{total} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{Mixing}$$

"Non" Traditional Answer?: Introduce a mirror realm No PV even in weak sector

$$\mathcal{L}_{total} = \mathcal{L} + \mathcal{L} + \mathcal{L}_{Mixing}$$

Don't talk to each other

"Non" Traditional Answer?: Introduce a mirror realm No PV even in weak sector

$$\mathcal{L}_{total} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{Mixing}$$

Except via the mixing term

"Non" Traditional Answer?:
Introduce a mirror realm

No PV even in weak sector

$$\mathcal{L}_{total} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{Mixing}$$

Except via the mixing term

The idea is actually not a new idea!
Already noted in:
Lee & Yang's PRL 104, 254 (1956):

For Mirror Matter Review: L. B. Okun, <u>Phys. Usp. **50**</u> 380-389 (2007)

- B, L: Not conserved properties: Neutral baryon oscillation possible.
- Tune the mixing coupling and mirror matter could be DM.

These oscillations may be coupled to magnetic field: <u>Z.</u> <u>Berezhiani, Eur. Phys. J. C 64, 421-431 (2009).</u>

So which abundant long lived neutral particle could we test this on?

 n^0 (880s), ν, Δ^0 (0.26ns), Ξ^0 (0.29ns), Λ^0 (1.4ps), Ω^0 (?) k^0 $(512\mu s)$, $\rho^0 (450ys)$, $\pi^0 (840fs)$ (not by spin coupling)

Neutrons are probably the best to start with for spin coupled searches + to probe B-L violation...

$$\mathcal{H} = \begin{bmatrix} \mu(\vec{\sigma}.\vec{B}) & 1/\tau \\ 1/\tau & \mu(\vec{\sigma}.\vec{B}') \end{bmatrix}$$

- B'~10µT (fields in HD molecular motivated: Z. Berezhiani, A.D. Dolgov,
- UCN losses in Earth's magnetic field with strict analysis): <u>A. Serebrov et al.,</u> <u>Phys. Lett. A 335, 327 (2005).</u>

What does that mean for Neutron Sector?

- Fast oscillation between mirror neutrons and neutrons: <u>Z. Berezhiani and L. Bento,</u> Phys. Rev. Lett. 96, 081801 (2006).
- Time scales of {oscillation into mirror world (~1s) << anti-neutron oscillation (which may be 2nd order)}: A. Addazi, Z. Berezhiani & Y. Kamyshkov, Eur. Phys. J. C (2017) 77: 301.

 \bigcirc

Motivation

What does that mean for Neutron Sector?

- Fast oscillation between mirror neutrons and neutrons: <u>Z. Berezhiani</u> and L. Bento, Phys. Rev. Lett. **96**, 081801 (2006).
- Time scales of {oscillation into mirror world << anti-neutron oscillation (which may be 2nd order)}: <u>A. Addazi, Z. Berezhiani & Y. Kamyshkov, Eur. Phys. J. C (2017) 77: 301.</u>

$$\mathcal{H} = \begin{bmatrix} \mu(\vec{\sigma}.\vec{B}) & 1/\tau \\ 1/\tau & \mu(\vec{\sigma}.\vec{B}') \end{bmatrix}$$

$$P_{n \to n'}(t) = \frac{\sin^2(\frac{\mu B - \mu B'}{2})t}{2\tau^2(\frac{\mu B - \mu B'}{2})^2} [1 + \cos(\beta)] + \frac{\sin^2(\frac{\mu B + \mu B'}{2})t}{2\tau^2(\frac{\mu B + \mu B'}{2})^2} [1 - \cos(\beta)]$$

Where β is the angle between ${\bf B}$ and ${\bf B'}$

General Techniques

UCN Storage Experiment:

Store UCNs, apply 0 and >0 magnetic fields, check if some neutrons vanished (into mirror realm)?

Regeneration Experiment ("Particle Through a Wall" kind of experiment):

Shoot cold neutrons through a magnetic field onto a wall, check if neutrons can be detected on the other side of the wall under magnetic field?

Prior Experiments

B' = 0

 $B' \neq 0$

UCN Storage Experiments

- G. Ban et al., Phys. Rev. Lett. 99, 161603 (2007): $\tau_{nn'}$ >103s (95 % C.L.), B'=0 [PSI-ILL]
- A. P. Serebrov et al. Phys. Lett. B 663, 3, 181-185 (2008): $\tau_{nn'}$ >414s (90 % C.L.), B'=0 [PNPI-ILL]
- I. Altarev et al., Phys. Rev. D **80**, 032003 (2009): $\tau_{nn'}$ >12s (95 % C.L.), B' \neq 0 [PSI-ILL]

Regeneration Experiments

- U. Schmidt, Proceedings of 2007 BLNV Workshop: $\tau_{nn'}$ >2.7s (90 % C.L.), B'=0 [FRM-II]
- L. Broussard et. al. (planning phase), Proceedings of 2017 DPF Meeting: $\tau_{nn'}$ >15s (90 % C.L.), B'≠0 [ORNL(HFIR)]

Prior Experiments

 $B' \neq 0$ B' = 0

JCN Storage Experiments

- G. Ban et al., Phys. Rev. Lett. 99, 161603 (2007): $\tau_{nn'}$ >103s (95 % C.L.), B'=0 [PSI-ILL]
- A. P. Serebrov et al. Phys. Lett. B 663, 3, 181-185 (2008): $\tau_{nn'}$ >414s (90 % C.L.), B'=0 [PNPI-ILL]
- I. Altarev et al., Phys. Rev. D **80**, 032003 (2009): $\tau_{nn'}$ >12s (95 % C.L.), B' \neq 0 [PSI-ILL]

Regeneration Experiments

- U. Schmidt, Proceedings of 2007 BLNV Workshop: $\tau_{nn'}$ >2.7s (90 % C.L.), B'=0 [FRM-II]
- L. Broussard et. al. (planning phase), Proceedings of 2017 DPF Meeting: $\tau_{nn'}$ >15s (90 % C.L.), B'≠0 [ORNL(HFIR)]

0 B'

Looked for variations in decay time constant after UCN storage time-t_s, with and without magnetic field.

$$p_{nn^*}(t) = \frac{Sin^2 \left[\frac{t}{\tau_{nn^*}} \sqrt{(1 + (\omega \tau_{nn^*})^2)}\right]}{(1 + (\omega \tau_{nn^*})^2)}$$

The experiments assumed a 0-mirror magnetic field.
$$\text{olLL-}t_f \sim \frac{4(\text{v=.021}m^3)}{(\text{a=.54}m^2)(\text{V=3m}s^{-1})} = .052 \text{ s}$$

At finite B₀ magnetic fields $(\omega_{\uparrow\downarrow}t_f>1\rightarrow B_0>420nT)$: $R_{\uparrow\downarrow}=\frac{1}{\overline{t_f}}\frac{1}{2(\omega_{\uparrow\downarrow}\tau_{nn^*})^2}$

At 'zero' B_0 magnetic fields ($\omega_0 t_f < 1 \rightarrow B_0 < 420nT$): $R_0 = \frac{1}{t_f} \frac{\overline{t_f^2}}{\tau_{nn^*}^2}$

Refer to A. Knecht's thesis for a full oscillation treatment P. 113-124.

Colloquium INFN Genoa Nov '17

0 B'

Looked for variations in decay time constant after **UCN** storage time-t_s, with and without magnetic field.

The experiments assumed a 0-mirror magnetic field. OILL- $t_f \sim \frac{4(v=.021m^3)}{(a=.54m^2)(V=3ms^{-1})} = .052 \text{ s}$

At finite B₀ magnetic fields $(\omega_{\uparrow\downarrow}t_f>1\rightarrow B_0>420nT)$: $R_{\uparrow\downarrow}=\frac{1}{\overline{t_f}}\frac{1}{2(\omega_{\uparrow\downarrow}\tau_{nn^*})^2}$

At 'zero' B_0 magnetic fields ($\omega_0 t_f < 1 \rightarrow B_0 < 420nT$): $R_0 = \frac{1}{\overline{t_f}} \frac{\overline{t_f^2}}{\tau_{nn^*}^2}$

If neutron count $N(t_s) = e^{-[(\sum \lambda_i + R)t_s]}$ where 'R' is the possible contribution from mirror neutron oscillations

$$N_{0/\uparrow\downarrow} = \frac{N_0(t_s)}{N_{\uparrow\downarrow}(t_s)} = e^{-[(R_{\uparrow\downarrow} - R_0)t_s]}$$

0 B'

Looked for variations in decay time constant after **UCN** storage time-t_s, with and without magnetic field.

The experiments assumed a 0-mirror magnetic field.

OILL-
$$t_f \sim \frac{4(v=.021m^3)}{(a=.54m^2)(V=3ms^{-1})} = .052 \text{ s}$$

If neutron count $N(t_s) = e^{-[(\sum \lambda_i + R)t_s]}$ where 'R' is the possible contribution from mirror neutron oscillations

$$N_{0/\uparrow\downarrow} = \frac{N_0(t_s)}{N_{\uparrow\downarrow}(t_s)} = e^{-[(R_{\uparrow\downarrow} - R_0)t_s]}$$

In case of a null result for $N_{0/\uparrow\downarrow} - \overline{1}$:

$$N_{0/\uparrow\downarrow} > 1 - \frac{t_f^2}{\tau_{nn^*}^2} \frac{t_s}{t_f} \rightarrow \tau_{nn^*} > \sqrt{\frac{t_s t_f}{1 - N_{0/\uparrow\downarrow}}}$$

Notice:

0 B': What can be accessed with oILL?

In current oILL (PSI-ILL) chamber:

 $\overline{LLL}\tau_{nn^*} > 109 \text{ s} (90\% \text{ C.L.})$

 $\overline{p_{NPI}\tau_{nn^*}} > 414 \text{ s } (90\% \text{ C.L.})$

VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT	
>414	90	SEREBROV	80	CNTR	UCN, B field on & off	
> 12	95	²⁹ ALTAREV	09A	CNTR	UCN, scan $0 \le B \le 12.5 \ \mu T$	
>103	95	BAN	07	CNTR	UCN, B field on & off	

4V/A \rightarrow t_f (s) oILL: *This = .053 : .053

Finite B'

Looked for variations in decay time constant after UCN storage time- t_s , with and without magnetic field by scanning B_0 .

$$\mathcal{H} = \begin{pmatrix} 2\omega\sigma & \varepsilon \\ \varepsilon & 2\omega'\sigma \end{pmatrix} = \begin{pmatrix} (\langle 0,0,b\rangle - \langle a_x,0,a_z\rangle)\sigma & \varepsilon \\ \varepsilon & (\langle 0,0,b\rangle + \langle a_x,0,a_z\rangle)\sigma \end{pmatrix}$$

Refer to EPJ C 64: 421-431 (2009) by Z. Bereziani for a full oscillation treatmen

Finite B'

Looked for variations in decay time constant after UCN storage time- t_s , with and without magnetic field by scanning B_0 .

$$\mathcal{H} = \begin{pmatrix} 2\omega\sigma & \varepsilon \\ \varepsilon & 2\omega'\sigma \end{pmatrix} = \begin{pmatrix} (\langle 0,0,b\rangle - \langle a_x,0,a_z\rangle)\sigma & \varepsilon \\ \varepsilon & (\langle 0,0,b\rangle + \langle a_x,0,a_z\rangle)\sigma \end{pmatrix}$$

$$p_B(t) = Sin^2(2\theta)[Cos^2(\phi - \phi')Sin^2(\Omega^- t) + Sin^2(\phi - \phi')Sin^2(\Omega^+ t)]$$

where
$$\Omega^{\pm}=\omega\pm\omega'$$
, $Tan(2\theta)=rac{arepsilon}{a_{z}}$ and $Tanig(2\phi^{(\prime)}ig)=rac{a_{x}}{b^{-(+)}\sqrt{a_{z}^{2}+arepsilon^{2}}}$

Refer to EPJ C 64: 421-431 (2009) by Z. Bereziani for a full oscillation treatmen

Finite B'

Looked for variations in decay time constant after UCN storage time- $t_{\rm s}$, with and without magnetic field by scanning B_0 .

$$\mathcal{H} = \begin{pmatrix} 2\omega\sigma & \varepsilon \\ \varepsilon & 2\omega'\sigma \end{pmatrix} = \begin{pmatrix} (\langle 0,0,b\rangle - \langle a_x,0,a_z\rangle)\sigma & \varepsilon \\ \varepsilon & (\langle 0,0,b\rangle + \langle a_x,0,a_z\rangle)\sigma \end{pmatrix}$$

$$p_B(t) = Sin^2(2\theta)[Cos^2(\phi - \phi')Sin^2(\Omega^- t) + Sin^2(\phi - \phi')Sin^2(\Omega^+ t)]$$

where
$$\Omega^{\pm}=\omega\pm\omega'$$
, $Tan(2\theta)=rac{arepsilon}{a_{z}}$ and $Tanig(2\phi^{(\prime)}ig)=rac{a_{x}}{b^{-(+)}\sqrt{a_{z}^{2}+arepsilon^{2}}}$

At 'zero' B_0 magnetic fields ($\omega_0 t_f < 1 \to B_0 < 420 nT$): $p_0 = \frac{1}{2} \frac{\varepsilon^2}{\omega'^2}$

At finite B₀ magnetic fields ($\omega_{\uparrow\downarrow}t_f>1\to B_0>420nT$): $p_B(t)=p_0\frac{1+\eta^2+2\eta cos(\beta)}{(1-\eta^2)^2}$

where $\eta = \omega'/_{\omega} = {}^{B'}/_{B_0}$ and β is the angle between B' and B0

Refer to EPJ C 64: 421-431 (2009) by Z. Bereziani for a full oscillation treatment.

Finite B': Previous Experiments

B' = 0

- G. Ban et al., Phys. Rev. Lett. 99, 161603 (2007): $\tau_{nn'}$ >103s (95 % C.L.), B'=0 [PSI-ILI
- hys. Rev. Lett. 99, 161603
 Bs (95 % C.L.), B'=0 [PSI-ILL)
 et al. Phys. Lett. B 663
 >414s (90 % CL) S excluded more of mys. Rev. 12s (95 % Company)
 Since The Want to Description Experiments

 Why of 2007 BLNV
 (90 % CL) B'-0 nys. Rev. D **80**, 032003 A. P. Serebrov et al. Phys. Lett. B 663 185 (2008): τ_{nn′}>414s <u>(</u>90 <u>%</u> C.L.

- U. Schmidt, P. Workshop: τ_{nr} $\frac{1}{(90)}$ % C.L.), B'=0 [FRM-II]
- L. Broussard et. al. (planning phase), Proceedings of 2017 DPF Meeting: $\tau_{nn'}$ >15s (90 % C.L.), B'≠0 [ORNL(HFIR)]

 $R' \neq 0$

- <u>Z. Bereziani, EPJ C 64: 421-431 (2009):</u> Reanalysis of PRL 99 161603; PRD 80, 032003; and PLB 663, 3,

Finite B': Reanalysis of old experiments

Looked for variations in decay time constant after UCN storage time- t_s , with and without magnetic field by scanning B_0 .

At 'zero' B₀ magnetic fields (
$$\omega_0 t_f < 1 \rightarrow B_0 < 420nT$$
): $p_0 = \frac{1}{2} \frac{\varepsilon^2}{\omega'^2}$
At finite B₀ magnetic fields ($\omega_{\uparrow\downarrow} t_f > 1 \rightarrow B_0 > 420nT$): $p_B(t) = p_0 \frac{1 + \eta^2 + 2\eta cos(\beta)}{(1 - \eta^2)^2}$

where $\eta = \omega'/_{\omega} = {}^{B'}\!/_{B_0}$ and β is the angle between B' and B_0

t_S	73 s	73 s [†]	123 s	198 s
$N_{B\uparrow}(t_s)$	44197 ± 53	44443 ± 53	28671 ± 30	17047 ± 31
$N_{B\downarrow}(t_s)$	44128 ± 53	44316 ± 46	28596 ± 30	16974 ± 31
$N_0(t_s)$	44317 ± 40	44363 ± 53	28635 ± 21	17015 ± 22
$E(t_s) \times 10^3$	3.50 ± 1.24	-0.37 ± 1.43	0.05 ± 1.04	0.27 ± 1.83
$A(t_s) \times 10^3$	0.78 ± 0.85	1.43 ± 0.79	1.31 ± 0.74	2.15 ± 1.28

Refer to EPJ C 64: 421-431 (2009) by Z. Bereziani for a full oscillation treatment.

Finite B': Reanalysis of old experiments

Looked for variations in decay time constant after UCN storage time- t_s , with and without magnetic field by scanning B_0 .

t_{s}	73 s	73 s [†]	123 s	198 s
$N_{B\uparrow}(t_s)$	44197 ± 53	44443 ± 53	28671 ± 30	17047 ± 31
$N_{B\downarrow}(t_s)$	44128 ± 53	44316 ± 46	28596 ± 30	16974 ± 31
$N_0(t_s)$	44317 ± 40	44363 ± 53	28635 ± 21	17015 ± 22
$E(t_s) \times 10^3$	3.50 ± 1.24	-0.37 ± 1.43	0.05 ± 1.04	0.27 ± 1.83
$A(t_s) \times 10^3$	0.78 ± 0.85	1.43 ± 0.79	1.31 ± 0.74	2.15 ± 1.28

$$A(t_s) = \frac{N_B(t_s) - N_{-B}(t_s)}{N_B(t_s) + N_{-B}(t_s)} = \frac{e^{-n_s p_B} - e^{-n_s p_{-B}}}{e^{-n_s p_B} + e^{-n_s p_{-B}}} \approx -n_s D_B Cos(\beta)$$

$$E(t_s) = 1 - \frac{N_0(t_s)}{N_B(t_s)} = \frac{2e^{-n_s p_B}}{e^{-n_s p_B} + e^{-n_s p_{-B}}} \approx -n_s \Delta_B$$

where
$$n_s={}^{t_S}\!/_{t_f}$$
; $p_B-p_{-B}=2D_B\mathcal{C}os(eta)$ and $2\Delta_B=(p_B+p_{-B})-2p_0$

Refer to EPJ C 64: 421-431 (2009) by Z. Bereziani for a full oscillation treatment.

Finite B': Reanalysis of old experiments

Looked for variations in decay time constant after UCN storage time- t_s , with and without magnetic field by scanning B_0 .

t_{s}	73 s	73 s [†]	123 s	198 s
$N_{B\uparrow}(t_s)$ $N_{B\downarrow}(t_s)$ $N_0(t_s)$	44197 ± 53 44128 ± 53 44317 ± 40	44443 ± 53 44316 ± 46 44363 ± 53	28671 ± 30 28596 ± 30 28635 ± 21	17047 ± 31 16974 ± 31 17015 ± 22
$E(t_s) \times 10^3$ $A(t_s) \times 10^3$	3.50 ± 1.24 0.78 ± 0.85	-0.37 ± 1.43 1.43 ± 0.79	0.05 ± 1.04 1.31 ± 0.74	0.27 ± 1.83 2.15 ± 1.28

$$p_B-p_{-B}=2D_B\mathcal{C}os(eta)$$
 and $2\Delta_B=(p_B+p_{-B})-2p_0$

olll (Knecht)

$$D_{B=20\mu T}Cos(\beta) = (9.5 \pm 3.0) \times 10^{-7}$$

 $\Delta_{B=20\mu T} = (3.5 \pm 2.5) \times 10^{-7}$

Finite B': Current Status

 $t_s^* = \{50, 100, 175\}s$

 $t_S = \{73, 123, 198\}s$

 $B_0 = \{0,2.5,5,7.5,10,12.5\}\mu T$

0	0	↑	↑	\downarrow	\downarrow	0	0	B ₀
16	16	16	16	16	16	16	16	#

	VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT	
	>414	90	SEREBROV	80	CNTR	UCN, B field on & off	
	ullet $ullet$ We do not	use the f	ollowing data for ave	rages	, fits, lin	nits, etc. • • •	
	> 12	95	²⁹ ALTAREV	09A	CNTR	UCN, scan $0 \le B \le 12.5 \ \mu T$	
	>103	95	BAN	07	CNTR	UCN, B field on & off	
32 Cottoquium INFN Genoa Nov '17							

 $_{ILL}^B \tau_{nn^*} > 12.8 s (90\% C.L.)$

Finite B': Current Status

 $t_s^* = \{50, 100, 175\}s$

 $t_s = \{73, 123, 198\}s$

 $B_0 = \{0, 2.5, 5, 7.5, 10, 12.5\}\mu T$

VALUE (s) CL% DOCUMENT ID TECN COMMENT >414 90 **SEREBROV** 80 CNTR UCN, B field on & off • • • We do not use the following data for averages, fits, limits, etc. • • ²⁹ ALTAREV > 12 09A CNTR UCN, scan $0 \le B \le 12.5 \mu T$ >103 CNTR UCN, B field on & off

 $_{ILL}^{B}\tau_{nn^{*}} > 12.8 s (90\% C.L.)$

 $\overline{33}$ Colloquium INFN Genoa Nov '17

What next?

How can the limits be improved?

Better sources, larger storage volume: Increase number of stored neutrons

Better storage vessels (coating):

Larger storage vessel, shape (spherical):

More importantly: How can we check the apparent signal of mirror neutron oscillation?

34 Colloquium INFN Genda Nov '17

NStar-1a: PSI UCN Source

NStar-1a: PSI UCN Source

Figure 2.2: Rendering of the central part of the UCN source from construction CAD files. A: Incoming proton beam; B: Spallation target; C: Heavy water tank; D: Solid deuterium moderator vessel; E: Vertical UCN guide; F: Central storage vessel flaps; G: Central storage vessel; H1-H3: Guides towards beamports "South", "West-1" and "West-2"; J: Thermal shield; K: Deuterium and helium supply lines; L: Vacuum vessel.

The UCN Spallation target receives 8s/300s of 590MeV p+ beam.

H1: South Port, connected to the SC-magnet and PSI nEDM apparatus.

H2: West-1 port, usually closed. Connected to a detector. Opened for 2 kicks/day.

H3: West-2 port also connected to a detector and always counting.

Static Field Compensation

1. S-C Magnet Polarizes Neutrons

2. SF1

Spin Flipper

3. Switch

Guides neutrons

4. Shutter UCN tight flap

5. SF2 Spin Flipper

6. Analyzer Foils
Spin Analyser

7. NANOSC UCN Detector

NStar-1a: Use Un-Polarized UCNs

Static Field Compensation

1. S-C Magnet

Polarizes Neutrons

2. SF1

Spin Flipper

3. Switch

Guides neutrons

4. Shutter

UCN tight flap

5. SF2

Spin Flipper

6. Analyzer Foils

Spin Analyser

7. NANOSC

UCN Detector

NStar-1a: To start with...

How can the limits be improved?

With higher statistics, mostly coming from a longer run

Dedicated run to scan the predicted parameter space

More importantly: How can we check the apparent signal of mirror neutron oscillation?

NStar-1a: Sample Cycle

We only take 8s/300s (max.) of the p+ beam, our runs are divided into cycles.

Optimizing t_{filling}

For neutrons stored for t_s^* = 180s, optimal $t_{filling}$ = 29.5s and this stays around 29.5s even after changing t_s significantly.

Optimizing t*s

But with storage time, the number of neutrons decreases exponentially.

We don't just optimize $\sqrt{t_s\sqrt{N}}$, because with increase in storage time, the time to complete a cycle increases linearly.

Remember:

 $au_{nn^*} \propto \sqrt[4]{N}$

 $\tau_{nn^*} \propto \sqrt{t_s t_f}$

Optimizing:

 $\tau_{nn^*}(t_t \propto t_S) \propto \sqrt{t_S \sqrt{N}},$

Choose:

 $t_s^* = 380s$

Optimizing t_{emptying}

We'd want t_{emptying} to be the longest time possible to amply measure all the neutrons remaining.

 $t_{emptying}$ = 75s. They can be accommodated with t_s = {180, 380}s, into cycles t_t = {300,500}s long

4) Effective Storage time: t_s + $2\tau_f$

 $t_s^* = \{50, 100, 175\}s$

 $t_s = \{72.6, 122.6, 197.6\}s$

- Notice we made the distinction between t_s^* and t_s .
- UCNs can also oscillate during filling (11.3s) and emptying (11.3s), we add 22.6s to the scheduled storage time.
- $t_s = t_s^* + 2\tau_f = t_s^* + 22.6(4)$
- au_f is independent of the storage time.

NStar-1a: Data Collected

Run Plan: We took data Aug-Oct 2017.

Cluster	Pattern	t* _s (t _t) /s	B _o /μT	# Cycles
1	01010101010101010	180 (300)	10	1243
2	01010101010101010	380 (500)	10	1136
3	01010101010101010	180 (300)	20	864
4	01010101010101010	380 (500)	20	775

- There was a break in between 10 and 20µT cycles as a part of risk management
- The data was collected such that 'a' and 'b' signal could be confirmed (or rejected) with just 10µT data and 'c' could be tested on addition of 20µT data.
- This results in approximately x2 @ 10µT.
- In addition to the main cluster of NStar runs, there were data taken for also t_s scans, mainly to extract t_f(t_s)

Raw UCN Counts

How are raw counts distributed?

- The UCN source doesn't always provide the same number of neutrons.
- •The number of neutrons provided by the source varies as a function of charge on target and motion of all the flaps.

Normalized UCN Counts

Since we are extracting storage lifetimes by counting the number of neutrons remaining after time $-t_s$, we have to have an independent means to normalize initial UCN counts.

- •West-2 has about ~15% scatter.
- •West-1 doesn't count regularly.
- •Monitor [counts ~ 10⁶] normalization has a maximum scatter of <1%, as expected from statistics.

49 Colloquium INFN Genoa Nov '17

Normalized UCN Counts

How are normalized counts distributed?

Estimating t_f

t_f may change with t_s due to softening of the UCN energy spectra

- $\bullet N(t_s) \rightarrow t_f(t_s)$
- •N(t_s) depends not only on neutron decay half life but mainly on loss (per bounce) parameter $\eta(E)$ which is energy dependent.
- •N(t_s) gives us the energy distribution of the neutrons.

Estimating t_f

t_f may change with t_s due to softening of the UCN energy spectra

- $\bullet \, N(t_s) \longrightarrow t_f(t_s)$
- •N(t_s) depends not only on neutron decay half life but mainly on loss (per bounce) parameter $\eta(E)$ which is energy dependent.
- •N(t_s) gives us the energy distribution of the neutrons.

What is the Magnetic Field Inside?

Once we ramp to $\pm 20\mu T$ (max) and down to $0\mu T$, do we any residual field? This residual field must be <420nT. Using Hg co-magnetometer...:

We are interested in the average <B(I₀)> during storage.

NStar: What was accessed with oILL?

Cluster	Pattern	t* _s (t _t) /s	B ₀ /μT	# Cycles
1	01010101010101010	180 (300)	10	1243
2	01010101010101010	380 (500)	10	1136
3	01010101010101010	180 (300)	20	864
4	01010101010101010	380 (500)	20	775

We find no finite asymmetries

$$\frac{n_0}{n_{\uparrow\downarrow}} = 1 - \frac{t_f t_s}{\tau_{nn'}^2}$$

 $\tau_{nn^*} > 426 \text{ s}(90\% \text{ C.L.})$

$$\frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} = -\frac{t_s}{t_f} \frac{\eta^3 \cos\beta}{\omega^2 \tau_{nn'}^2 (1 - \eta^2)^2} \xrightarrow{\lambda/\Box r}$$

 $\tau_{nn^*} > 36 \text{ s } (90\% \text{ C.L.}, B_0 = [0,20]\mu\text{T})$

$$\eta = B'/B$$

<u>Very Preliminary...</u>

NStar Finite B': What was accessed with oILL?

Summary

Resolved (?) the crisis

$$\frac{n_0}{n_{\uparrow\downarrow}} = 1 - \frac{t_f t_s}{\tau_{nn'}^2} \qquad \qquad \frac{B' = 0}{\tau_{nn^*}} > 426 s(90\% \text{ C.L.})$$

$$\frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} = -\frac{t_{s}}{t_{f}} \frac{\eta^{3} Cos\beta}{\omega^{2} \tau_{nn'}^{2} (1 - \eta^{2})^{2}} \xrightarrow{\qquad \qquad } T_{nn^{*}} > 36 \text{ s } (90\% \text{ C.L., } B_{0} = [0,20] \mu\text{T})$$

VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT	
>414	90	SEREBROV	08	CNTR	UCN, B field on & off	
> 12	95	²⁹ ALTAREV	09A	CNTR	UCN, scan $0 \le B \le 12.5 \ \mu T$	
>103	95	BAN	07	CNTR	UCN, B field on & off	

Where do we go from here?

- Obviously finish a rigorous analysis (the numbers are bound to change).
- Nstar-1b: Dedicated Mirror Neutron Search (to look for modulating signal) with a sensitivity of $\tau_{nn^*} > 1000s$.

