Beautiful paths to probe physics beyond the standard model of particles

Jennifer school, Trieste, August $3^{\text {rd }} 2018$

Semileptonic and leptonic

	Process	Obser.	Theory	Discovery $\left(\mathrm{ab}^{-1}\right)$	Sys. limit $\left(a b^{-1}\right)$	vs LHCb BESIII	vs Belle	Anomaly	NP
-	$B \rightarrow \pi l \nu_{l}$	$\left\|V_{u b}\right\|$	***	-	10	$\star \star \star$	***	**	\star
-	$B \rightarrow X_{u} \nu_{l}$	$\left\|V_{u b}\right\|$	**	-	2	***	**	***	*
\bigcirc	$B \rightarrow \tau \nu$	$B r$.	***	2	50	$\star \star \star$	***	\star	$\star \star \star$
-	$B \rightarrow \mu \nu$	$B r$.	$\star \star *$	5	50	$\star \star \star$	***	*	$\star \star \star$
\bigcirc	$B \rightarrow D^{(*)} \nu_{l}$	$\left\|V_{c b}\right\|$	$\star \star *$	-	1	***	\star	*	
-	$B \rightarrow X_{c} \nu_{l}$	$\left\|V_{c b}\right\|$	$\star \star \star$	-	1	**	**	**	**
-	$B \rightarrow D^{(*)} \tau \nu_{\tau}$	$R\left(D^{(*)}\right)$	$\star \star \star$	-	5	**	***	$\star \star \star$	$\star \star \star$
-	$B \rightarrow D^{(*)} \tau \nu_{\tau}$	P_{τ}	$\star \star *$	-	15	***	***	**	***
-	$B \rightarrow D^{* *} l \nu_{l}$	$\left\|V_{c b}\right\|$	\star	-	-	**	$\star \star *$	**	

Recent rare B decays results

$\mathbf{b} \boldsymbol{\rightarrow} \mathbf{s l}^{+} \mathbf{1}^{-}$

$\Rightarrow 2$ orders of magnitude smaller than $\mathrm{b} \rightarrow \mathrm{s} \gamma$ but rich NP search potential

- electromagnetic penguin: C_{7}

Amplitudes from

- vector electroweak: $\quad \mathrm{C}_{9}$
- axial-vector electroweak: C_{10}
may interfere
w/ contributions from NP

Many observables:

- Branching fractions
- Isospin asymmetry $\left(\mathrm{A}_{\mathrm{I}}\right)$, Lepton forward-backward asymmetry $\left(\mathrm{A}_{\mathrm{FB}}\right)$, CP asymmetry ...
- and much more...
\Rightarrow Exclusive $\left(\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mathrm{l}^{+} \mathrm{l}^{-}\right)$, Inclusive $\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+} \mathrm{l}^{-}\right)$

$b \rightarrow 11 s$

- Start with b $\rightarrow \mathrm{s} \gamma$

$b \rightarrow 11 s$

- Start with $\mathrm{b} \rightarrow \mathrm{s} \gamma$, pay a factor $\alpha_{\mathrm{EM}}=\frac{1}{137}$
\rightarrow Decay the γ into 2 leptons

$b \rightarrow 11 s$

- Start with $\mathrm{b} \rightarrow \mathrm{s} \gamma$, pay a factor α_{Em}
\rightarrow Decay the γ into 2 leptons
- Add an interfering box diagram $\rightarrow \mathrm{b} \rightarrow$ lls, very rare in the SM

$$
B\left(\mathrm{~B} \rightarrow 11 \mathrm{~K}^{*}\right)=(3.3 \pm 1.0) \cdot 10^{-6}
$$

$b \rightarrow 11 s$

- Start with $\mathrm{b} \rightarrow \mathrm{s} \gamma$, pay a factor α_{Em} \rightarrow Decay the γ into 2 leptons
- Add an interfering box diagram $\rightarrow \mathrm{b} \rightarrow$ lls, very rare in the SM $B\left(B \rightarrow 11 K^{*}\right)=(3.3 \pm 1.0) \cdot 10^{-6}$

- Sensitive to Supersymmetry, Any 2 HDM, Fourth generation, Extra dimensions, Axions...
- Ideal place to look for new physics

$b \rightarrow 11 s$

- Start with $\mathrm{b} \rightarrow \mathrm{s} \gamma$, pay a factor α_{Em}
\rightarrow Decay the γ into 2 leptons
- Add an interfering box diagram $\rightarrow \mathrm{b} \rightarrow$ lls, very rare in the SM $B\left(\mathrm{~B} \rightarrow 1 \mathrm{~K} \mathrm{~K}^{*}\right)=(3.3 \pm 1.0) \cdot 10^{-6}$

- But beware of LD effects:
- Tree $b \rightarrow c \bar{c} s,(c \bar{c}) \rightarrow l l$
- Can be removed by mass cuts
- Interferes elsewhere

First observation

$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$Event

Lepton Photon 01, 2001 July 23, Roma

$B \rightarrow K^{*} 1^{+} 1^{-}$decays

- Channels: $\mathrm{K}^{*} \rightarrow \mathrm{~K}^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}, \mathrm{K}^{+} \pi^{0}, \mathrm{l}=\mathrm{e}$ or μ

[arXiv:0904.0770]
illustration: $\mathrm{q}^{2} \in[0.0,2,0] \mathrm{GeV}^{2}$

$\left[\frac{3}{2} F_{L} \cos ^{2} \theta_{K^{*}}+\frac{3}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K^{*}}\right)\right] \times \epsilon\left(\cos \theta_{K^{*}}\right)$

$$
\begin{array}{r}
{\left[\frac{3}{4} F_{L}\left(1-\cos ^{2} \theta_{B \ell}\right)+\frac{3}{8}\left(1-F_{L}\right)\left(1+\cos ^{2} \theta_{B \ell}\right)\right.} \\
\left.+A_{F B} \cos \theta_{B \ell}\right] \times \epsilon\left(\cos \theta_{B \ell}\right),
\end{array}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{K}^{*}}=0.83 \pm 0.17 \pm 0.08 \\
& \mathrm{R}_{\mathrm{K}}=1.03 \pm 0.19 \pm 0.06 \\
& \hline
\end{aligned}
$$

Lepton flavor universality (LFU)

```
How do the SM gauge bosons couple to charged leptons of different flavors?
```

Universality in neutral current interactions
$U^{\dagger} U=V^{\dagger} V=\mathbb{I}_{3 \times 3} \Rightarrow \mathcal{L}_{\mathrm{nc}}^{\ell} \equiv\left(\overline{\widehat{e}} \gamma_{\mu} \widehat{e}+\overline{\widehat{\mu}} \gamma_{\mu} \widehat{\mu}+\overline{\widehat{\tau}} \gamma_{\mu} \widehat{\tau}\right)\left(g_{\gamma} A^{\mu}+g_{Z} Z^{\mu}\right)$
The photon and Z-boson couple with the same strength to the three lepton families

$$
R_{Y}=\frac{\mathrm{BR}\left(X \rightarrow Y e_{i}^{+} e_{i}^{-}\right)}{\operatorname{BR}\left(X \rightarrow Y e_{j}^{+} e_{j}^{-}\right)} \quad i \neq j
$$

SM expectation

$$
R_{Y}=1+\mathcal{O}\left(\frac{m_{i, j}^{n}}{m_{X}^{n}}\right)
$$

Test of LFU with $\mathbf{B} \rightarrow \mathbf{K}^{* 0} \mu \mu$ and $\mathbf{B} \rightarrow \mathbf{K}^{* 0} \mathbf{e} \mathbf{e}, \mathbf{R}_{\mathrm{K}^{\circ}}$

Two regions of q^{2}

- Low [0.045-1.1] $\mathrm{GeV}^{2} / \mathrm{c}^{4}$
- Central [1.1-6.0] $\mathrm{GeV}^{2} / \mathrm{c}^{4}$

Different q^{2} regions probe different processes in the OPE framework short distance contributions described by Wilson coefficients

$$
\mathcal{H}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha_{e}}{4 \pi} \sum\left[C_{i} \mathcal{O}_{i}+C_{i}^{\prime} \mathcal{O}_{i}^{\prime}\right]
$$

- Measured relative to $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{~J} / \psi(\mathrm{ll})$ in order to reduce systematics
- Challenging:
- due to significant differences in the way μ and e interact with detector
- Bremsstrahlung
- Trigger

Strategy

- Measured relative to $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{~J} / \psi(\mathrm{ll})$ in order to reduce systematics

$$
\mathcal{R}_{K^{* 0}}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)} / \frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow e^{+} e^{-}\right)\right)}
$$

> Selection as similar as possible between $\mu \mu$ and ee
» Pre-selection requirements on trigger and quality of the candidates
» Cuts to remove the peaking backgrounds
» Particle identification to further reduce the background
» Multivariate classifier to reject the combinatorial background
» Kinematic requirements to reduce the plartially-reconstructed backgrounds
» Multiple candidates randomly rejected (1-2\%)
> Efficiencies
» Determined using simulation, but tuned using data

Strategy

- Measured relative to $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{~J} / \psi(\mathrm{ll})$ in order to reduce systematics

$$
\mathcal{R}_{K^{* 0}}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)} / \frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow e^{+} e^{-}\right)\right)}
$$

- High occupancy of calorimeters (compared to muon stations)
\Rightarrow hardware thresholds on electron E_{T} higher than on muon p_{T} (L0 Muon, $\mathrm{p}_{\mathrm{T}}>1.5,1.8 \mathrm{GeV}$)

3 exclusive triggercategories:

- L0 Electron : electron hardware trigger fired by clusters associated to at least one of the two electrons ($\mathrm{E}_{\mathrm{T}}>2.5 \mathrm{GeV}$)
- L0 Hadron : hadron hardware trigger fired by clusters associated to at least one of the $\mathrm{K}^{* 0}$ decay products ($\mathrm{E}_{\mathrm{T}}>2.5 \mathrm{GeV}$)
- L0 TIS ${ }^{(*)}$: any hardware trigger fired by particles in the event not associated to the signal candidate
(*) TIS = Trigger Independent of Signal

Bremsstrahlung - ee

> Electrons emit a large amount of bremsstrahlung that results in degraded momentum and mass resolutions
> Two types of bremsstrahlung
» Downstream of the magnet

- photon energy in the same calorimeter cell as the electron
- momentum correctly measured
» Upstream of the magnet
- photon energy in different calorimeter cells than electron
- momentum evaluated after bremsstrahlung

Fit results $-\mu \mu$

Fit results - ee

Yields

Precision of the measurement driven by the statistics of the electron samples

	$B^{0} \rightarrow K^{* 0} \boldsymbol{\ell}^{+} \ell^{-}$		$B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow \ell^{+} \ell^{-}\right)$
	low- q^{2}	central- \boldsymbol{q}^{2}	
$\mu^{+} \mu^{-}$	$285{ }_{-18}^{+18}$	$353{ }_{-21}^{+21}$	$274416{ }_{-654}^{+602}$
$e^{+} e^{-}(\mathrm{LOE})$	55 ± 9	67 +10	$43468{ }_{-221}^{222}$
$e^{+} e^{-}(\mathrm{LOH})$	13 ± 5	$19+\quad 6$	$3388{ }_{-}^{+62}$
$e^{+} e^{-}$(LOI)	$21+5$	$25 \pm{ }_{-}^{+}$	$11505{ }_{-114}^{+115}$

In total, about 90 and $110 \mathrm{~B}^{0} \rightarrow$ ee candidates at low - and central- q^{2}, respectively

Results

LHCb Preliminary	low- $\boldsymbol{q}^{\mathbf{2}}$	central- $\boldsymbol{q}^{\mathbf{2}}$
$\mathcal{R}_{K^{* 0}}$	$0.660_{-0.070}^{+0.10} \pm 0.024$	$0.685_{-0.069}^{+0.113} \pm 0.047$
$95 \% \mathrm{CL}$	$[0.517-0.891]$	$[0.530-0.935]$
$99.7 \% \mathrm{CL}$	$[0.454-1.042]$	$[0.462-1.100]$

The measured values of $\mathrm{R}_{\mathrm{K}^{* 0}}$ are found to be in good agreement among the three trigger categories in both q^{2} regions

Results

- The compatibility of the result in the low- \mathbf{q}^{2} with respect to the SM prediction(s) is of 2.2-2.4 standard deviations
- The compatibility of the result in the central- \mathbf{q}^{2} with respect to the SM prediction(s) is of 2.4-2.5 standard deviations

Test of lepton universality using $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \mathbf{1}^{+} \mathbf{1}^{-}$decays

arXiv:1406.6482

- Ratio of branching fractions of $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$sensitive to lepton universality

$$
R_{K}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma\left[\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)\right]}{d q^{2}} d q^{2}}{\int_{q_{\min }^{2}}^{q_{\text {max }}^{2}} \frac{d \Gamma\left[\mathcal{B}\left(B^{+} \rightarrow K+e+e^{-}\right)\right]}{d q^{2}} d q^{2}}=\left(\frac{N_{K \mu \mu}}{N_{\text {Kee }}}\right)\left(\frac{N_{J / \psi(e e) K}}{N_{J / \psi(\mu \mu) K}}\right)\left(\frac{\varepsilon_{K e e}}{\varepsilon_{K \mu \mu}}\right)\left(\frac{\varepsilon_{J / \psi(e e) K}}{\varepsilon_{J / \psi(\mu \mu) K}}\right)
$$

- SM prediction is $\mathrm{R}_{\mathrm{K}}=1$ with an uncertainty of $\mathrm{O}\left(10^{-3}\right)$
- Measurement relative to resonant $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}$ modes

Test of lepton universality using $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} 1^{+} 1^{-}$decays

[arXiv :1406.6482]

R_{K} : ratio of branching fractions for dilepton invariant mass squared range $1<\mathrm{q}^{2}<6 \mathrm{GeV}^{2} / \mathrm{c}^{4}$

- The combination of the various trigger $\underset{\imath}{ }$ channels gives:

$$
\mathbf{R}_{\mathrm{K}}=0.745_{-0.074}^{+0.090}(\text { stat }) \pm 0.036(\text { syst })
$$

- Most precise measurement to date, disagreement with SM at 2.6σ level
$\Rightarrow B\left(\mathrm{~B}^{+} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{K}^{+}\right)=\left(1.56_{-0.15}^{+0.19}(\text { stat })_{-0.05}^{+0.06}(\right.$ syst $\left.)\right) \times 10^{-7}$ compatible with SM predictions

Test of lepton universality using $\mathbf{B}^{+} \rightarrow \mathbf{K}^{(*)} \mathbf{l}^{+} \mathbf{l}^{-}$decays

Model candidates

> Model with extended gauge symmetry
\checkmark Effective operator from Z' exchange
\checkmark Extra $U(1)$ symmetry with flavor dependent charge
\diamond Models with leptoquarks
\checkmark Effective operator from LQ exchange
\checkmark Yukawa interaction with LQs provide flavor violation
\diamond Models with loop induced effective operator
\checkmark With extended Higgs sector and/or vector like quarks/leptons
\checkmark Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV

$$
\mathbf{b} \rightarrow \mathbf{s e} \mu, \mathbf{b} \rightarrow \mathbf{s e} \tau, \ldots
$$

Differential Branching Fractions

Results consistently lower than SM predictions

Should we believe LFU violation?

- R measurements are double ratio's to J / ψ, check with
$\mathrm{K}^{*} \mathrm{~J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} / \mu^{+} \mu^{-}$
$=1.043 \pm 0.006 \pm 0.045$
- $\mathcal{Z}\left(\mathrm{B}^{-} \rightarrow \mathrm{K}^{-} \mathrm{e}^{+} \mathrm{e}^{-}\right)$agrees with SM prediction, puts onus on muon mode which is well measured and low
- Both $R_{K} \& R_{K^{*}}$ are different than ~1
- Supporting evidence of effects in angular distributions

LFV b \rightarrow sll'decays

Glashow, Guadagnoli and Lane, 1411.0565, LUV $\Rightarrow \mathrm{LFV}$, such as $B \rightarrow K \mu \mathrm{e}, \mathrm{K} \mu \tau$ are also generated...
A.Crivellin et al, 1706.08511

- BaBar: $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{K}^{ \pm} \mathrm{e}^{\mp}\right)<3.8 \times 10^{-8}$ at $90 \% \mathrm{CL}($ arXiv :hep-ex/0604007)
- Belle: $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{ \pm} \mathrm{e}^{\mp}\right)<1.8 \times 10^{-7}$ at $90 \% \mathrm{CL}($ arXiv : 1807.03267)

$\mathbf{R}\left(\mathbf{D}^{*}\right)$ and $\mathbf{b} \rightarrow \mathbf{S} \mu \mu$

more observables...
C. Hati et al, arXiv: 1806.10146

A.Datta et al, arXiv :1609.09078: interesting modes are $\tau \rightarrow 3 \mu$, and $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mu \tau$

anything else ?

b \rightarrow s anomalies

Found by LHCb (and perhaps hinted by Belle)

Many observables: global pattern

Neutral current

1-loop (and CKM-suppressed) in the SM

The New Physics can be heavy

$B \rightarrow \tau v$

Tree diagram, but quite rare : $B_{S M}=(1.2 \pm 0.4) .10^{-4}$ (for other modes, SM expectations: $10^{-11}(\mathrm{e} v), 5 \times 10^{-7}(\mu v)$)

Higgs-mediated diagram reduces (small $\tan \beta$) or enhances the BF
2 HDM (type II): $B\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)^{2}$
uncertainties from f_{B} and $\left|V_{u b}\right|$ can be reduced to B_{B} and other CKM uncertainties by combining with precise $\Delta \mathrm{m}_{\mathrm{d}}$

Event reconstruction in $B \rightarrow \tau v$

$\mathrm{B}_{\text {sig }} \rightarrow \tau v$

(70 \% of all τ decays)
$\tau \rightarrow e v \nu, \mu \nu \nu$,
$\tau \rightarrow \pi v, \pi \pi^{0} v, 3 \pi v$

Btag

Require no particle and no energy left after removing $\mathrm{B}_{\text {tag }}$ and visible particles of $\mathrm{B}_{\text {sig }}$

$\mathrm{B}^{+} \rightarrow \tau^{+} \boldsymbol{v}$ (update hadronic tag)

 simultaneous fit to the different τ reconstruction modes $(\tau \rightarrow e v v, \mu v v, \pi v, \rho v)$

$$
\begin{aligned}
& \text { Belle, semileptonic tag: } 1.54_{-0.37-0.31}^{+0.38+0.29} \\
& \text { Belle, combined: } 0.96 \pm 0.26 \\
& \text { BaBar, hadronic tag: } 1.83_{-0.49}^{+0.53} \pm 0.24 \\
& \text { BaBar, semileptonic tag: } 1.7 \pm 0.8 \pm 0.2 \\
& \text { BaBar, combined: } 1.79 \pm 0.48 \\
& \text { World average: } 1.15 \pm 0.23 \\
& \text { World average : } \\
& B\left(B^{+} \rightarrow \tau^{+} v\right)=(1.15 \pm 0.23) \times 10^{-4}
\end{aligned}
$$

$B \rightarrow \tau v$ status and projections

Belle II	Statistical	Systematic (reducible, irreducible)	Total Exp Theory	Total	
$\left\|V_{u b}\right\| B \rightarrow \tau \nu$ (had. tagged)					
$711 \mathrm{fb}^{-1}$	19.0	$(7.1,2.2)$	20.4	2.5	20.5
$5 \mathrm{ab}^{-1}$	7.2	$(2.7,2.2)$	7.9	1.5	8.1
$50 \mathrm{ab}^{-1}$	2.3	$(0.8,2.2)$	3.2	1.0	3.4
$\left\|V_{u b}\right\| B \rightarrow \tau \nu$ (SL tagged)					
$605 \mathrm{fb}^{-1}$	12.4	$\left(9.0,,_{-4.8}^{+3.0}\right)$	${ }_{-16.1}^{+15.6}$	2.5	${ }_{-16.2}^{+15.8}$
$5 \mathrm{ab}^{-1}$	4.3	$\left(3.1,{ }_{-4.8}^{+3.0}\right)$	${ }_{-7.2}^{+6.1}$	1.5	${ }_{-7.3}^{+6.3}$
$50 \mathrm{ab}^{-1}$	1.4	$\left(1.0,{ }_{-4.8}^{+3.0}\right)$	${ }_{-5.1}^{+3.4}$	1.0	${ }_{-5.2}^{+3.6}$

observation of $\mathbf{B} \rightarrow \mu v$ is also expected (from 5 ab $^{-1}$)

$\mathrm{B}^{+} \rightarrow \tau^{+} v$ results

$$
B_{\mathrm{SM}}\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{~m}_{\mathrm{B}} \mathrm{~m}_{\tau}^{2}}{8 \pi}\left(1-\frac{\mathrm{m}_{\tau}^{2}}{\mathrm{~m}_{\mathrm{B}}^{2}}\right) \mathrm{f}_{\mathrm{B}}^{2}\left|\mathrm{~V}_{\mathrm{ub}}\right|^{2} \tau_{\mathrm{B}}
$$

2 HDM (type II) : $B\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)^{2}$

- Charged Higgs are excluded in range of reasonable masses
- Atlas and CMS are still looking [Atlas, CHARGED 2008]

Tauonic B decays

$B \rightarrow \tau v$

$$
B_{\mathrm{SM}}\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{~m}_{\mathrm{B}} \mathrm{~m}_{\tau}^{2}}{8 \pi}\left(1-\frac{\mathrm{m}_{\tau}^{2}}{\mathrm{~m}_{\mathrm{B}}^{2}} \mathrm{f}_{\mathrm{B}}^{2}\left|\mathrm{~V}_{\mathrm{ub}}\right|^{2} \tau_{\mathrm{B}}\right.
$$

2 HDM (type II) : $B\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)^{2}$
uncertainties from f_{B} and $\left|V_{u b}\right|$ can be reduced to B_{B} and other CKM uncertainties by combining with precise $\Delta \mathrm{m}_{\mathrm{d}}$
$B \rightarrow \mathbf{D}^{(*)} \tau \boldsymbol{\nu}$
$2 \operatorname{HDM}$ (type II) : $B\left(\mathrm{~B} \rightarrow \mathrm{D} \tau^{+} v\right)=\mathrm{G}_{\mathrm{F}}^{2} \tau_{\mathrm{B}}\left|\mathrm{V}_{\mathrm{cb}}\right|^{2} \mathrm{f}\left(\mathrm{F}_{\mathrm{V}}, \mathrm{F}_{\mathrm{S}}, \frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)$ uncertainties from form factors F_{v} and F_{S} can be studied with $\mathrm{B} \rightarrow \mathrm{Dlv}$ (more form factors in $\mathrm{B} \rightarrow \mathrm{D}^{*} \tau v$)

$\underline{B}^{+} \boldsymbol{\rightarrow} \mathbf{D}^{(*)} \boldsymbol{\tau}^{+} \boldsymbol{v}$

PRD 82, 072005 (2010) arXiv: 1005.2302

- 657M B̄̄
- same method than for $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \tau^{+} v$ $B_{\text {sig }}$:
$\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} \pi \pi^{0}$
$\tau^{+} \rightarrow \mathrm{e}^{+} v_{\mathrm{e}} \overline{\mathrm{v}}_{\tau}, \mu^{+} v_{\mu} \bar{v}_{\tau}, \pi^{+} \bar{v}_{\tau}, \rho^{+} \bar{v}_{\tau}$
13 different decay chains

First $\mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{\mathbf{0}} \tau v$ evidence !

$$
\begin{array}{rccc}
\mathbf{P}_{\mathbf{D}^{\mathbf{o}}}(\mathbf{G e V} / \mathbf{c}) & \mathrm{N}_{\mathrm{S}} & B(\%) & \Sigma(\sigma) \\
\mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{* \mathbf{0}} \boldsymbol{\tau}^{+} \boldsymbol{v} & 446_{-56}^{+58}(226) & 2.12_{-0.27}^{+0.28} \pm 0.29 & 8.1 \\
\mathbf{B}^{+} \rightarrow \overline{\mathbf{D}}^{\mathbf{0}} \boldsymbol{\tau}^{+} \boldsymbol{v} & 146_{-41}^{+42}(15) & 0.77 \pm 0.22 \pm 0.12 & 3.5
\end{array}
$$

- 2 D unbinned fit to $\mathrm{m}_{\text {miss }}^{2}$ and p_{1}^{*}
- fitted samples
$-4 \mathrm{D}^{(*)} l$ samples ($\mathrm{D}^{0} 1, \mathrm{D}^{* 0} 1, \mathrm{D}^{+} 1$ and $\left.\mathrm{D}^{*+} 1\right)$
$-4 D^{(*)} \pi^{0} 1$ control samples ($\left.D^{* *}(1 / \tau) v\right)$
$\Rightarrow \mathbf{D} \tau v$ and $\mathbf{D}^{*} \tau v$ clearly observed

$B \rightarrow \mathbf{D}^{(*)} \tau \boldsymbol{v}$

Summary for $\mathbf{B} \rightarrow \mathbf{D}^{()^{()} \tau v}$

in 2016

$\Rightarrow \mathrm{R}\left(\mathrm{D}^{(*)}\right)=\frac{\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau v_{\tau}\right)}{\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{l} v_{1}\right)}$

BaBar

$$
\begin{aligned}
& R(D)=0.440 \pm 0.058 \pm 0.042 \\
& R\left(D^{*}\right)=0.332 \pm 0.024 \pm 0.018
\end{aligned}
$$

Belle

$$
\begin{aligned}
& R(D)=0.375 \pm 0.064 \pm 0.026 \\
& R\left(D^{*}\right)=0.293 \pm 0.038 \pm 0.015 \\
& R\left(D^{*}\right)=0.302 \pm 0.030 \pm 0.011
\end{aligned}
$$

LHCb

$R\left(D^{*}\right)=0.336 \pm 0.027 \pm 0.030$

average

$R(D)=0.397 \pm 0.040 \pm 0.028$
$R\left(D^{*}\right)=0.316 \pm 0.016 \pm 0.010$ difference with SM predictions is at $\mathbf{4 . 0 \sigma}$ level

$\mathbf{B} \rightarrow \mathbf{D}^{*+} \tau v$ at LHCb

need a strong background suppression: $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} 3 \pi+\mathrm{X}\right) / \mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \tau v ; \tau \rightarrow 3 \pi\right)_{\mathrm{SM}} \sim 100$ \Rightarrow detached vertex method

$\tau \rightarrow 3 \pi\left(\pi^{0}\right)$
[LHCb-PAPER -2017-017]

components of 3D fit ($\mathrm{q}^{2}, 3 \pi$ decay time, BDT): $\tau \rightarrow \pi^{-} \pi^{+} \pi^{-} v_{\tau}, \pi^{-} \pi^{+} \pi^{-} \pi^{0} v_{\tau}$ $\mathrm{X}_{\mathrm{b}} \rightarrow \mathrm{D}^{* *} \tau v_{\tau}$
$\left.B \rightarrow \mathrm{D}_{\mathrm{s}(\mathrm{J})} \mathrm{X}\right\}$ (relative) yields constrained $\mathrm{X}_{\mathrm{b}} \rightarrow$ DDX from control samples
$\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \tau \nu\right) / \mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} 3 \pi\right)=(1.93 \pm 0.13 \pm 0.17)$
$\Rightarrow R\left(D^{*}\right)=0.285 \pm 0.019 \pm 0.025 \pm 0.014$
$\mathbf{R}(\mathbf{D}), \mathbf{R}\left(\mathbf{D}^{*}\right)$ still at 4σ away from SM

$\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \nu$

$$
\mathrm{R}\left(\mathrm{D}^{(*)}\right)=\frac{\mathrm{BF}\left(\mathrm{~B} \rightarrow \mathrm{D}^{(*)} \tau v_{\tau}\right)}{\mathrm{BF}\left(\mathrm{~B} \rightarrow \mathrm{D}^{(*)} l v_{1}\right)}
$$

$$
R(D)=0.407 \pm 0.039 \pm 0.024
$$

$$
R\left(D^{*}\right)=0.304 \pm 0.013 \pm 0.007
$$

difference with SM predictions
is at $\mathbf{4 . 1 o l}$ level

$\mathbf{B}_{\mathbf{c}} \rightarrow \mathbf{J} / \psi \tau v$

b \rightarrow s anomalies

Found by LHCb (and perhaps hinted by Belle)

Many observables: global pattern
Neutral current
1-loop (and CKM-suppressed) in the SM

The New Physics can be heavy

Found by several experiments (LHCb, BaBar and Belle)

Two observables: $R(D)$ and $R\left(D^{*}\right)$

Charged current

Tree-level in the SM

The New Physics must be light

$B \rightarrow D^{(*)} \tau v$ and other observables

$\stackrel{\underset{\sim}{x}}{x}$

$-\mathcal{L}_{\text {eff }}=2 \sqrt{2} G_{F} V_{q b}\left[\left(\delta_{\nu_{\tau}, \nu_{\ell}}+C_{V_{1}}^{\left(q, \nu_{\ell}\right)}\right) \mathcal{O}_{V_{1}}^{\left(q, \nu_{\ell}\right)}\right.$

$$
\left.+\sum_{X=}^{V_{2}, S_{1}, S_{2}, T} C_{X}^{\left(q, \nu_{\ell}\right)} \mathcal{O}_{X}^{\left.\left(q, \nu_{\ell}\right)\right]}\right],
$$

where the four-Fermi operators:

$$
\begin{aligned}
& \mathcal{O}_{V_{1}^{\left(q, \nu_{\ell}\right)}}^{(q)}=\left(\bar{q} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\ell}\right), \\
& \mathcal{O}_{\left.V_{\nu}, \nu_{\ell}\right)}=\left(\bar{q} \gamma^{\mu} P_{R} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\ell}\right), \\
& \mathcal{O}_{\left.S_{1}\right)}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} P_{R} b\right)\left(\bar{\tau} P_{L} \nu_{\ell}\right), \\
& \mathcal{O}_{\left.S_{2}, \nu_{\ell}\right)}=\left(\bar{q} P_{L} b\right)\left(\bar{\tau} P_{L} \nu_{\ell}\right), \\
& \mathcal{O}_{T}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\ell}\right)
\end{aligned}
$$

[Details in Watanabe et al, B2 TiP theory]

CLFV : beyond the Standard Model

$$
\left.\mathcal{B}_{\nu S M}(\tau \rightarrow \mu \gamma)=\frac{3 \alpha}{32 \pi}\left|U_{\tau i}^{*} U_{\mu i} \frac{\Delta m_{3 i}^{2}}{m_{W}^{2}}\right|^{2}<10^{-40}\right) \quad \mathcal{L}=\mathcal{L}_{S M}+\frac{C^{(5)}}{\Lambda} O^{(5)}+\sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)}+\ldots
$$

					$\tau \rightarrow 3 \mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^{+} \pi^{-}$	$\tau \rightarrow \mu K \bar{K}$	$\tau \rightarrow \mu \pi$	$\tau \rightarrow \mu \eta^{(\prime)}$
Model	Reference	$\underline{T} \rightarrow \mu$	$\underline{T} \rightarrow \mu \mu \mu$	$4 \text {-lepton } \longrightarrow \mathrm{O}_{\mathrm{S}, V}^{4 f}$	\checkmark	-	-	-	-	-
SM+ v oscillations	EPJ C8 (1999) 513	10^{-40}	10^{-14}		\checkmark	\checkmark	\checkmark	\checkmark	-	-
SM+ heavy Maj V_{R}	PRD 66 (2002) 034008	10^{-9}	10^{-10}	dipole ${ }^{\mathrm{O}_{5}^{q}} \mathrm{O}_{\text {d }}^{\text {d }}$	-	-	\checkmark ($\mathrm{I}=1)$	\checkmark ($\mathrm{I}=0,1$)	-	-
Non-universal Z'	PLB 547 (2002) 252	10^{-9}	10^{-8}	lepton-gluon $\rightarrow \mathrm{O}_{\mathrm{GG}}$	-	-	\checkmark	\checkmark	-	-
SUSY SO(10)	PRD 68 (2003) 033012	10^{-8}	10^{-10}	$\mathrm{O}_{\mathrm{A}}^{9}$	-	-	-	-	\checkmark ($\mathrm{l}=1)$	\checkmark (I=0)
mSUGRA+seesaw	PRD 66 (2002) 115013	10^{-7}	10^{-9}	$\mathrm{O}_{\mathrm{P}}^{9}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0)$
SUSY Higgs	PLB 566 (2003) 217	10-10	10^{-7}		lepton	-quark		Celis,	rigliano, P	semar (2014)

Dark Sector Physics

exploit the clean $\mathrm{e}^{+} \mathrm{e}^{-}$environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

search for a dark photon decaying invisibly, and the search for an axion-like particle may be possible even in "Phase 2"

Summary

- Impressive results in radiative B decays from B-factories
- Using the full Run 1 data set the $\mathrm{R}_{\mathrm{K}^{* 0}}$ ratio has been measured by LHCb with the best precision to date in two q^{2} bins
- The compatibility of the result with respect to the SM prediction(s) is of 2.2-2.5 standard deviations in each q^{2} bin
- The result is particularly interesting given a similar behaviour in R_{K}
- Rare decays will largely benefit from the increase of energy (cross-section) and collected data ($\sim 5 \mathrm{fb}^{-1}$ expected in LHCb) in Run2
- LHCb and Belle II have a wide programme of LU tests based on similar ratios, as well as searches for LFV decays
- Similarly, for B decays with tau in final states
- Many improvements and new results to come..

Outlook

- Few tantalizing results on rare decays in B sector covered in this talk... but much more in B decays: LFV searches, $B \rightarrow K^{(*)} v \bar{v}, B \rightarrow \tau v, \mu v \ldots$ also in charm, charmonium, bottomonium, light Higgs, τ, DS, kaon sectors ...
- Definitely not only complementary, but stimulating competition between (super) B-factories and LHCb (upgrade):
- for the expected : results on $\mathrm{B}_{(\mathrm{s})} \rightarrow \mu \mu, \mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu, \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$, γ angle \ldots
- for the less expected: results on $\left|V_{u b}\right|, D^{*} \tau \nu \ldots$

LHC era			HL-LHC era	
$\begin{gathered} \text { Run 1 } \\ (2010-12) \end{gathered}$	$\begin{gathered} \text { Run } 2 \\ (2015-18) \end{gathered}$	$\begin{gathered} \text { Run } 3 \\ (2020-22) \end{gathered}$	$\begin{gathered} \text { Run } 4 \\ (2025-28) \end{gathered}$	$\begin{aligned} & \text { Run 5+ } \\ & (2030+) \end{aligned}$
$3 \mathrm{fb}^{-1}$	$8 \mathrm{fb}^{-1}$	$23 \mathrm{fb}^{-1}$	$46 \mathrm{fb}^{-1}$	$100 \mathrm{fb}^{-1}$

$\mathrm{B}^{+} \rightarrow \tau^{+} \nu$ results

- Fully reconstruct one of the B (hadronic, semi-leptonic)
- Look for a single lepton or pion from $\tau \rightarrow l v \bar{v}$ or $\tau \rightarrow \pi \bar{v}$
- Require nothing else in the detector \Rightarrow Signal has 0 energy in the ECAL

Extra calorimeter energy : $\mathrm{E}_{\text {ECL/extra }}(\mathrm{GeV})$ Belle $\quad \mathrm{N}_{\mathrm{B} \overline{\mathrm{B}}}$
Hadronic tag
(449 M)
Semilep.tag (657 M) BaBar
Hadronic tag
(468 M)
$\left(1.80_{-0.54}^{+0.57} \pm 0.26\right) \quad 3.6$
preliminary
Semilep.tag $(459 \mathrm{M}) \quad(1.7 \pm 0.8 \pm 0.2) \quad 2.3 \quad$ PRD81, 051101 (2010)

$\mathrm{B}^{+} \rightarrow \tau^{+} v$ results

World average : $B\left(B^{+} \rightarrow \tau^{+} v\right)=(\mathbf{1 . 6 8} \pm \mathbf{0 . 3 1}) \times \mathbf{1 0}^{-4}$

Sensitivity to new physics in rare B decays

- Model-independent description in effective field theory

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{\mathrm{tb}} V_{\mathrm{ts}}^{*} \sum_{i}^{\mathcal{C}^{\mathcal{C}_{i} \mathcal{O}_{i}}+\underbrace{\mathcal{C}_{i}^{\prime} \mathcal{O}_{i}^{\prime}}}
$$

Left-handed Right-handed, $\frac{m_{s}}{m_{b}}$ suppressed
■ Wilson coefficients $\mathcal{C}_{i}^{(\prime)}$ encode short-distance physics, $\mathcal{O}_{i}^{(\prime)}$ corr. operators
 $\mathcal{O}_{7}^{(\prime)}$ photon penguin
$\mathcal{O}_{9}^{(\prime)}$ vector coupling $\mathcal{O}_{10}^{(\prime)}$ axialvector coupling $\mathcal{O}_{S, P}^{(\prime)}$ (pseudo)scalar penguin
M.Ciuchini et al, arXiv: 1512.07157
T.Hurth et al, arXiv:1603.00865
S.Descotes-Genon et al, arXiv : 1510.04239...

NP changes short-distance C_{i} and/or add new long-distance ops $\mathrm{O}^{\prime}{ }_{i}$

Lepton flavor universality in the Standard Model

Fermion masses

In the SM, fermions get their masses via Yukawa couplings with the Higgs doublet Φ For example, for the leptons:

$$
\begin{aligned}
\mathcal{L}_{Y}^{\ell}=Y_{e} \bar{\ell}_{L} \Phi e_{R}+\text { h.c. } & =\frac{1}{\sqrt{2}}(v+h) Y_{e}\left(\begin{array}{cc}
\bar{\nu} & \bar{e}
\end{array}\right)_{L}\binom{0}{1} e_{R}+\text { h.c. } \\
& =\mathcal{M}_{e} \bar{e}_{L} e_{R}+\frac{\mathcal{M}_{e}}{v} h \bar{e}_{L} e_{R}+\text { h.c. }
\end{aligned}
$$

where

$$
\mathcal{M}_{e}=\frac{v}{\sqrt{2}} Y_{e} \quad \begin{gathered}
3 \times 3 \text { charged lepton } \\
\text { mass matrix }
\end{gathered}
$$

Similarly, one obtains

$$
\mathcal{L}_{m}^{F}=\mathcal{M}_{e} \bar{e}_{L} e_{R}+\mathcal{M}_{u} \bar{u}_{L} u_{R}+\mathcal{M}_{d} \bar{d}_{L} d_{R}+\text { h.c. }
$$

$$
\begin{aligned}
\mathcal{M}_{f} & =\frac{v}{\sqrt{2}} Y_{f} \\
f & =e, u, d
\end{aligned}
$$

Fermion masses

- It is remarkable that the same mechanism that gives mass to the gauge bosons (SSB), also gives a mass to the fermions
- Neutrinos do not get a mass. This can be traced back to the absence of right-handed neutrinos.
- In general, these mass mass matrices are not diagonal: they must be diagonalized to get the mass eigenstates and eigenvalues

Biunitary transformations

$$
\quad \begin{gathered}
\text { For example, for the charged leptons: } \\
\widehat{\mathcal{M}}_{f}=U_{f}^{\dagger} \mathcal{M}_{f} V_{f} \\
\widehat{\mathcal{M}}_{e}=U_{e}^{\dagger} \mathcal{M}_{e} V_{e}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
\end{gathered}
$$

The electroweak currents

In order to find the fermionic currents we must expand the fermion kinetic Lagrangian:

$$
\begin{gathered}
\mathcal{L}_{\text {kin }} \supset \bar{\ell}_{L}\left(g \frac{\vec{\tau}}{2} \vec{W}_{\mu}-\frac{g^{\prime}}{2} B_{\mu}\right) \gamma^{\mu} \ell_{L}+\bar{q}_{L}\left(g \frac{\vec{\tau}}{2} \vec{W}_{\mu}+\frac{g^{\prime}}{6} B_{\mu}\right) \gamma^{\mu} q_{L} \\
-\bar{e}_{R} g^{\prime} B_{\mu} \gamma^{\mu} e_{R}+\bar{u}_{R} \frac{2}{3} g^{\prime} B_{\mu} \gamma^{\mu} u_{R}-\bar{d}_{R} \frac{1}{3} g^{\prime} B_{\mu} \gamma^{\mu} d_{R} \\
=\underbrace{g J_{\mu}^{1} W^{1 \mu}+g J_{\mu}^{2} W^{2 \mu}}_{\begin{array}{c}
\text { Charged } \\
\text { current }
\end{array}}+\underbrace{g J_{\mu}^{3} W^{3 \mu}+g^{\prime} J_{\mu}^{Y} B^{\mu}}_{\begin{array}{c}
\text { Neutral } \\
\text { current }
\end{array}}
\end{gathered}
$$

The neutral current

$$
\begin{gathered}
\mathcal{L}_{\mathrm{nc}}=g J_{\mu}^{3} W^{3 \mu}+g^{\prime} J_{\mu}^{Y} B^{\mu} \\
\left\{\begin{array}{c}
J_{\mu}^{3}=\frac{1}{2}\left(\bar{\nu}_{L} \gamma_{\mu} \nu_{L}-\bar{e}_{L} \gamma_{\mu} e_{L}+\bar{u}_{L} \gamma_{\mu} u_{L}-\bar{d}_{L} \gamma_{\mu} d_{L}\right) \\
J_{\mu}^{Y}=\frac{1}{2}\left(-3 \bar{\nu}_{L} \gamma_{\mu} \nu_{L}-3 \bar{e}_{L} \gamma_{\mu} e_{L}+\bar{u}_{L} \gamma_{\mu} u_{L}+\bar{d}_{L} \gamma_{\mu} d_{L}\right. \\
\left.-6 \bar{e}_{R} \gamma_{\mu} e_{R}+4 \bar{u}_{R} \gamma_{\mu} u_{R}-2 \bar{d}_{R} \gamma_{\mu} d_{R}\right)
\end{array}\right.
\end{gathered}
$$

After some basic algebra:

$$
\mathcal{L}_{\mathrm{nc}}=e J_{\mu}^{\mathrm{em}} A^{\mu}+\frac{g}{\cos \theta_{W}}\left(J_{\mu}^{3}-\sin ^{2} \theta_{W} J_{\mu}^{\mathrm{em}}\right) Z^{\mu}
$$

$$
\text { with } \quad J_{\mu}^{\mathrm{em}}=J_{\mu}^{3}+J_{\mu}^{Y}=\sum_{f} q_{f} \bar{f} \gamma_{\mu} f \quad e=g \sin \theta_{W}=g^{\prime} \cos \theta_{W}
$$

An observation about the neutral current:

$$
\begin{array}{r}
U^{\dagger} U=V^{\dagger} V=\mathbb{I}_{3 \times 3} \Rightarrow \quad \bar{f}_{X} \gamma_{\mu} f_{X}=\overline{\widehat{f}}_{X} \gamma_{\mu} \widehat{f}_{X} \\
(\mathrm{X}=\mathrm{L} \text { or } \mathrm{R})
\end{array}
$$

The neutral currents are diagonal (and universal) in flavor space There are no flavor changing neutral currents (FCNC) at tree-level

$$
Z \nrightarrow \bar{u} c \quad \text { in contrast to } W \rightarrow \bar{s} u
$$

Fundamentally this is caused by the fact that fermion families are exact replicas. This was the original motivation that led Glashow, lliopoulos and Maiani (GIM) to postulate the existence of the charm quark.

$\underline{\text { Angular analysis of } \mathbf{B}_{\mathbf{d}}^{\mathbf{0}} \rightarrow \mathbf{K}^{*} \mathbf{l}^{+} \mathbf{1}^{-} \text {decays }}$

- Final state described by $q^{2}=m_{11}^{2}$ and three angles $\Omega=\left(\theta_{1}, \theta_{\mathrm{K}}, \phi\right)$

$$
\begin{aligned}
\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}} & =\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
& +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

- $\mathrm{F}_{\mathrm{L}}, \mathrm{A}_{\mathrm{FB}}, \mathrm{S}_{\mathrm{i}}$ sensitive to $\mathrm{C}_{7}^{(1)}, \mathrm{C}_{9}^{(1)}, \mathrm{C}_{10}^{(1)}$

Angular analysis of $\mathbf{B}_{\mathbf{d}}^{\mathbf{0}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$decays

Angular analysis of $\mathbf{B}_{\mathbf{d}}^{0} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$decays

- Projections of fit results for $\mathrm{q}^{2} \in[1.1,6.0] \mathrm{GeV}^{2}$
- Good agreement of PDF projections with data in every bin of q^{2}

Angular analysis of $\mathbf{B}_{\mathbf{d}}^{\mathbf{0}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$decays

[arXiv:1512.04442]

Angular analysis of $\mathbf{B}_{d}^{\mathbf{0}} \rightarrow K^{*} \mu^{+} \mu^{-}$decays

Angular analysis of $\mathbf{B}_{\mathrm{d}}^{\mathbf{0}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$decays

- Form-factor less dependent observables $\mathrm{P}_{5}^{\prime}=\frac{\mathrm{S}_{5}}{\sqrt{\mathrm{~F}_{\mathrm{L}}\left(1-\mathrm{F}_{\mathrm{L}}\right)}}$

[^0]
Angular analysis of $\mathbf{B}_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$decays

- Form-factor less dependent observables $P_{5}^{\prime}=\frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}}$
\bar{q}^{n}

- Tension in P_{5}^{\prime} seen with $1 \mathrm{fb}^{-1}$ is confirmed
- Local deviations of 2.9σ and 3.0σ for $q^{2} \in[4.0,6.0]$ and $[6.0,8.0] \mathrm{GeV}^{2}$
- Naive combination of the two gives local significance of 3.7σ
- LHCb, Belle and ATLAS show deviations in $4<\mathrm{q}^{2}<8 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
- CMS shows better agreement
- Belle does both e's \& μ 's (PRL 118, 111801, 2017)

NP or hadronic effect?

Possible explanations for shift in C_{9} :
a potential new physics contribution $\mathrm{C}_{9}^{\mathrm{NP}}$ enters amplitudes always with a charm-loop contribution $\mathrm{C}_{9}^{\mathrm{c} \overline{\mathrm{c}}}\left(\mathrm{q}^{2}\right)$
\Rightarrow spoiling an unambiguous interpretation of the fit result in terms of NP

New physics

NP e.g. Z', leptoquarks

hadronic charm loop contributions

NP or hadronic effect?

Bin-by-bin fit of the one-parameter scenario with a single coefficient $\mathbf{C}_{\mathbf{9}}{ }^{\mathbf{N P}}$

[S.Descotes-Genon et al, arXiv:1510.04239]

$C_{9}^{N P}$ doesn 't depend on q^{2},
$C_{9}^{c \bar{i}}\left(\mathbf{q}^{2}\right)$ expected to exhibit a non-trivial q^{2} dependence
\Rightarrow definitely need more stat.

[^0]: - Tension in P_{5}^{\prime} seen with $1 \mathrm{fb}^{-1}$ is confirmed
 - Local deviations of 2.9σ and 3.0σ for $q^{2} \in[4.0,6.0]$ and $[6.0,8.0] \mathrm{GeV}^{2}$
 - Naive combination of the two gives local significance of 3.7σ

