Beautiful paths to probe physics beyond the standard model of particles

K.Trabelsi karim.trabelsi@kek.jp

Jennifer school, Trieste, August 2nd 2018

Program of the 3 lectures

• How to study elementary particles

- direct searches and indirect searches
- experiments through history of particles physics

• Rare B decays

- quest for New Physics (beyond Standard Model)
- two approaches for the same quest (LHCb vs Belle)

• **CP Violation**

- matter and anti-matter
- fully exploiting our detector ….

At a B-factory...

How many B candidates can I reconstruct with 1 fb⁻¹? 1 fb⁻¹ \rightarrow 1 × 10⁶ B produced but BF(B \rightarrow D⁰ π^{-}) = 5×10⁻³ and BF(D \rightarrow K⁻ π^{+}) = 3.8% and reconstruction efficiency ~ 10%... signal yield ~ 10 events !!

Rediscovering beauty: $B \rightarrow D^{(*)}h + B \rightarrow J/\psi K^{(*)}$

with very limited statistics (< 1 fb^{-1}), Belle II can rediscover the B meson

Show capacity for charm physics in $e^+e^- \rightarrow c \overline{c}$ $\circ D^0$, D^+ , D^*

• Cabibbo favoured and suppressed modes

... for **B-physics**

- hadronic modes from $b \rightarrow c$
- ∘ semileptonic decay modes from $b \rightarrow c$

that is for dominant decays.... ...we are looking for rare decays

Rare B decays

- $\circ~$ FCNC are strongly suppressed in the SM: only loops + GIM mechanism
- Any new particle generating new diagrams can change the amplitudes

New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

 $K_L \rightarrow \mu^+ \mu^-$ decay can be generated by the box diagram:

in a renormalisable gauge theory, is expected to give a branching ratio of $g^4 \sim \alpha^2 \sim 10^{-4}$, with α the fine structure constant.

 $M_{\mu\mu}\,(MeV/e^2)$

With the measured charm quark mass $\,m_{\rm c} \sim 1.27~GeV$, the predicted rates are in agreement with observation.

6

Radiative B decays

artist's view... of the penguin diagram

CLEO

- 1975: "South Area Experiment" group conceives CLEO
- 1979: First data collected
- 1980: B meson discovered
- 1983: Ds meson discovered
- 1986: CLEO II detector with Csl calorimeter installed
- 1989: b → u transitions discovered
- 1993: b → s penguin decays discovered
- 1995: CLEO II.V with silicon vertex detector installed
- 1999: CLEO III with RICH installed
- 2003: CLEO-c data collection started
- 2004: hc discovered and D+ meson decay constant measured
- 2008: Running ends on March 3rd
- 2009: 500th paper published

CLEO observation of $B \rightarrow K^* \gamma [1993]$

$B \rightarrow K^* \gamma$ measurements

simultaneous fit of 4 final states \Rightarrow extraction of BFs....

but uncertainty in the hadronization process limits the ability to predict individual exclusive rates from first principles of the theory 9

$B \rightarrow K^* \gamma$ measurements

simultaneous fit of 4 final states \Rightarrow extraction of BFs, Δ_{0+} , A_{CP} , ΔA_{CP} ...

10

$B \rightarrow K^* \gamma$ measurements

simultaneous fit of 4 final states \Rightarrow extraction of BFs, Δ_{0+} , A_{CP} , ΔA_{CP} . . . $\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+})$

isospin asymmetry: $\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$

b→sγ

- Amplitude $\propto V_{ts} |C_7|$
- $\circ~$ First penguin ever observed (93)
- Experiment:

 $B \simeq 3 \cdot 10^{-4}$ ∘ SM: $B = (3.36 \pm 0.23) \cdot 10^{-4}$ [Misiak et al., hep-ph/0609232] ⇒ [Misiak et al, arXiv:1503.01789]

Strong constraint on New Physics

b→sy SM branching fraction

[Misiak et al, PRL98, 02202, 2007]

- From effective Hamiltonian one gets the BF
- Uncertainties due to m_b and m_c : normalise to $b \rightarrow ce\nu$ and $b \rightarrow ue\nu$ [Misiak & Steinhauser, NPB764:62,2007]
- $b
 ightarrow s \gamma$ branching fraction calculated at all NNLO orders in 2006

How to estimate the branching fraction b→sy? Semi-inclusive (sum-of-exclusive)

<u>Semi-inclusive (sum-of-exclusive)</u>

38 modes

 M_{X_s} < 2.8 GeV/c² , E^{*} > 1.9 GeV

possible but large systematics (difficult to estimate/trust)

lode ID	Final State	Mode ID	Final State	
1	$K^+\pi^-$	20	$K_{S}^{0}\pi^{+}\pi^{0}\pi^{0}$	
2	$K_{S}^{0}\pi^{+}$	21	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	
3	$K^{+}\pi^{0}$	22	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	
4	$K_{S}^{0}\pi^{0}$	23	$K^+\eta$	Mode C
5	$K^{+}\pi^{+}\pi^{-}$	24	$K_S^0 \eta$	1
6	$K_{S}^{0}\pi^{+}\pi^{-}$	25	$K^+\eta\pi^-$	1
7	$K^{+}\pi^{-}\pi^{0}$	26	$K_S^0 \eta \pi^+$	2
8	$K_{S}^{0}\pi^{+}\pi^{0}$	27	$K^+\eta\pi^0$	3
9	$K^+\pi^+\pi^-\pi^-$	28	$K_S^0 \eta \pi^0$	4
10	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	29	$K^+\eta\pi^+\pi^-$	-
11	$K^{+}\pi^{+}\pi^{-}\pi^{0}$	30	$K_S^0 \eta \pi^+ \pi^-$	5
12	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	31	$K^+\eta\pi^-\pi^0$	6
13	$K^+\pi^+\pi^+\pi^-\pi^-$	32	$K_{S}^{0}\eta\pi^{+}\pi^{0}$	7
14	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	33	$K^{+}K^{+}K^{-}$	
15	$K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	34	$K^{+}K^{-}K_{S}^{0}$	c
16	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	35	$K^+K^+K^-\pi^-$	9
17	$K^{+}\pi^{0}\pi^{0}$	36	$K^{+}K^{-}K^{0}_{S}\pi^{+}$	10
18	$K_{S}^{0}\pi^{0}\pi^{0}$	37	$K^{+}K^{+}K^{-}\pi^{0}$	
19	$K^{+}\pi^{-}\pi^{0}\pi^{0}$	38	$K^{+}K^{-}K^{0}_{S}\pi^{0}$	

			Data
Iode Category	Definition	Mode ID	·
1	$K\pi$ without π^0	1,2	4.2 ± 0.4
2	$K\pi$ with π^0	3,4	2.1 ± 0.2
3	$K2\pi$ without π^0	5,6	14.5 ± 0.5
4	$K2\pi$ with π^0	7,8	24.0 ± 0.7
5	$K3\pi$ without π^0	9,10	8.3 ± 0.8
6	$K3\pi$ with π^0	11,12	16.1 ± 1.8
7	$K4\pi$	13-16	11.1 ± 2.8
8	$K2\pi^0$	17-22	14.4 ± 3.5
9	$K\eta$	23-32	3.2 ± 0.8
10	3K	33-38	2.0 ± 0.3

[772 MBB] [arXiv:1411.7198] [for $E_{\gamma}^{*} > 1.9 \text{ GeV}$) [471 MBB] [471 MBB] [arXiv:1207.2520] [syst: cross-feed, peaking BG, X_s fragmentation]

$B \rightarrow X_s \gamma$ spectrum

 \circ b→sγ is a 2-body decay. The energy of the photon in the b quark frame is

$$E_{\gamma} = \frac{m_{b}}{2} (1 - \frac{m_{s}^{2}}{m_{b}^{2}}) \simeq \frac{m_{b}}{2}$$

• But we measure $B \rightarrow X_s \gamma$ and in the B meson, the b quark is moving which smears the energy spectrum

• Mean
$$\sim \frac{m}{2}$$

- → Width ~ Fermi motion in B meson
- $\circ~$ The BF is calculated for some energy cutoff (1.6 GeV). For other cutoffs E_0 apply $~[Misiak~et~al\,,(2007)]$

$$\left(\frac{B(E_{\gamma} > E_{0})}{B(E_{\gamma} > 1.6 \text{ GeV})}\right) \simeq 1 + 0.15 \frac{E_{0}}{1.6 \text{ GeV}} - 0.14 \left(\frac{E_{0}}{1.6 \text{ GeV}}\right)^{2}$$

b→sy spectrum at Belle

One would like to measure the photon energy spectrum in $b \rightarrow s \gamma$ decays

- $\circ~$ Be unbiased: only look at the γ
- B mesons only decay to γ via b \rightarrow s γ
- $\circ \ \ \, But \ there \ are \ indirect \ \gamma \ from \ \pi^0 \\ and \ \eta \ in \ B \ \overline{B} \ events$
- $\circ \ ... and a \ lot more indirect <math display="inline">\pi^0$ and η in non-B \overline{B} events
 - \Rightarrow Lots of background at low energy

b \rightarrow sy spectrum at Belle 1.26 GeV < Ei < 2.20 GeV

inclusive $B \rightarrow X_s \gamma$ measurement

untagged

lepton tag: background suppression, low stat

18

- No kinematic constraints
- $\circ~$ Only a high energy photon measured in $\Upsilon(4S)$ rest frame
- $\circ~$ Lower $E_{_{Y}}~threshold~(1.7~GeV)$

Event selection:

- Hadronic events with isolated photon(s) in ECL. $E^* > 1.5 \text{ GeV}$.
- $\circ~$ Veto $\gamma~ from ~\pi^0~ and ~\eta$
- Apply event shape cuts to suppress continuum background.

19

Endpoint check:

Photons from e^+e^- collisions can have an energy up to 5 GeV

But not if they come from a B decay. The kinematic limit is $E^* = m_B/2$.

No significant deviation from 0 observed

 $B\overline{B}$ subtraction :

Using measured π^0 and η spectra and some efficiency-corrected MC.

Raw spectrum after all cuts and background corrections

Signal yield: 24100 ± 2200 events

23

 $B(B \rightarrow X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4} \text{ (for } E_{\gamma}^* > 1.7 \text{ GeV})$

 $B(B \rightarrow X_s \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08) \times 10^{-4} \text{ (for } E_{\gamma}^* > 1.8 \text{ GeV})$ $B(B \rightarrow X_s \gamma) = (3.06 \pm 0.41 \pm 0.26) \times 10^{-4} \text{ (for } E_{\gamma}^* > 2.0 \text{ GeV})$

• Most precise measurement of $B(B \rightarrow X_s \gamma)$ (lowest E_{γ}^* threshold)

- Crucial input for global fit to extract $|V_{ub}|$ and $B \rightarrow X_s \gamma$ decay rate
- *B* is given for E_{γ} thresholds: 1.7, 1.8, 1.9, 2.0 GeV
- Systematic error is dominated by off resonance subtraction !

$B \rightarrow X_s \gamma$ as an illustration

25

NNLO SM calculation: $B_{SM}(B \rightarrow X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) M.Misiak et al. [arXiv:1503.01789] (central value increased by 6.4% compared to 2007 value) PRL 98, 022002 (2007)

The lower γ energy threshold, the smaller the model uncertainties in SM, but the larger background in measurement

Charged Higgs (2HDM Type II) bound (up- and down-type quarks couple to separate doublets)

$\underline{\mathbf{B} \rightarrow \mathbf{X}_{s} \gamma}$

WA: $B(B \rightarrow X_s \gamma) = (3.49 \pm 0.20) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) vs SM: $B(B \rightarrow X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) [Misiak et al, arXiv:1503.01789]

Charged Higss bound (2HDM TypeII): $M_{H^+} > 400 \text{ GeV} @ 95\% \text{ C.L.}$

Rare B decays at LHCb

LHCb is ...

- 1075 members, from 68 institutes in 17 countries (September 2014)
- Dedicated experiment for precision measurements of CP violation and rare decays
- Beautiful, charming, strange physics program

- pp collisions at $\sqrt{s} = 8(13)$ TeV in RunI (RunII)
- bb
 quark pairs produced correlated in the forward region
- Luminosity of $4 \times 10^{32} cm^{-2} s^{-1}$

LHCb

LHCb

Tracking system

Measure displaced vertices and momentum of particles

 $\sigma_{BV} \sim 16 \, \mu \, m$ in x, y

 $\sigma(p)/p{=}0.4\,\%{-}0.6\,\%$ for $p{\in}[0,\,100]\,GeV/c$ $\sigma(m_{\scriptscriptstyle B})\sim 24\,MeV$ for two body decays

LHCb

Particle identification

Distinguish between pions, kaons, protons, electrons and muons

Kaon identification $\epsilon_{\rm K} \sim 95\%$, $\epsilon_{\pi \rightarrow \rm K}$ few%

Muon identification $\epsilon_{\mu} = 98\%$, $\epsilon_{\pi \rightarrow \mu} = 0.6\%$

<u>LHCb</u>

Trigger system Write out 5000 events/sec

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else \Rightarrow clean events

$$\begin{split} \sigma_{b\overline{b}} &\sim 1\,nb \Rightarrow 1\,\,fb^{-1}\,\,produces\,\,10^6\,B\,\overline{B}\\ \sigma_{b\overline{b}}/\sigma_{total} &\sim 1/4 \end{split}$$

(in the context of B anomalies)

pp→bbX

production of B^+ , B^0 , B_s , B_c , Λ_b ...

but also a lot of other particles in the event

 \Rightarrow lower reconstruction efficiencies

 $\sigma_{b \bar{b}}$ much higher than at the $Y(4\,S)$

	√s [GeV]	σ _{ьნ} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
1.110	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10 ⁻²

b b production cross-section ~ 5> b b production cross-section ~ 5> Tevatron, ~ 500,000 × BaBar/Belle !! $\sigma_{b\bar{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficiencies relativey long mean decay length $\beta \gamma c \tau \sim 200 \mu m$ data taking period(s) [1999-2010] = 1 ab⁻¹ [1999-2010] = 1 ab⁻¹ [run I: 2010-2012] = 3 fb⁻¹, [run II: 2015-2018] = 2 fb⁻¹ \Rightarrow 8 fb⁻¹? (near) [Belle II from 2018] \Rightarrow 50 ab⁻¹ [LHCb upgrade from 2020]

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...

loop diagram + suppressed in SM + theoretically clean = an excellent place to look for new physics

higher-order FCNC allowed in SM $B(B_s \rightarrow \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ $B(B_d \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

[Bobeth et al, PRL 112 (2014) 101801]

same decay in theories extending the SM (some of NP scenarios may boost the B→μμ decay rates)

Leptonic decays

$$\begin{split} B^0_{(s)} &\to \ell^+ \ell^- \\ BR(B^0_{(q)} \to \ell^+ \ell^-) = \frac{\tau_B G_F^4 M_W^2 \sin^4 \theta_W}{8\pi^{5|}} |C_{10} V_{tb} V_{tq}^*| F_B^2 m_B m_\ell^2 \times \left| \sqrt{1 - \frac{4m_\ell^2}{m_B^2}} \right| \\ \end{split}$$

Branching ratio proportional to the lepton mass squared

$$\frac{BR(B_{(q)}^{0} \to \tau^{+}\tau^{-})}{BR(B_{(q)}^{0} \to \mu^{+}\mu^{-})} \sim \frac{m_{\tau}^{2}}{m_{\mu}^{2}} \qquad \qquad \frac{BR(B_{(q)}^{0} \to \mu^{+}\mu^{-})}{BR(B_{(q)}^{0} \to e^{+}e^{-})} \sim \frac{m_{\mu}^{2}}{m_{\epsilon}^{2}}$$

Helicity suppression, same reason why the pion decays into muon instead of electron \Rightarrow true only in SM

$$\frac{BR(B^0_{(d)} \to \mu^+ \mu^-)}{BR(B^0_{(s)} \to \mu^+ \mu^-)} = \frac{\tau_{B^0_d}}{\tau_{B^0_s}} \frac{m_{B^0_d}}{m_{B^0_s}} \frac{F_{B^0_d}}{F_{B^0_s}} (\frac{V_{td}}{V_{ts}})^2$$

All parameters either measurable or calculable with high precision valid only in Minimal Flavour Violating Models (where the flavour structure is described only by CKM)

In a ''general'' NP scenarios, the branching ratio of B leptonic decay is given by

$$BR(B_s^0 \to \mu^+ \mu^-) \propto (1 - \frac{4m_\ell^2}{m_B^2})|C_s - C_s'|^2 + |(C_P - C_P')^2 + 2\frac{m_\ell^2}{m_B^2}(C_{10} - C_{10}')|^2$$

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...

$\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-}$ results

Constraints on NP models

