Beautiful paths to probe physics beyond the standard model of particles

Jennifer school, Trieste, August $2^{\text {nd }} 2018$

Program of the 3 lectures

- How to study elementary particles
- direct searches and indirect searches
- experiments through history of particles physics
- Rare B decays
- quest for New Physics (beyond Standard Model)
- two approaches for the same quest (LHCb vs Belle)
- CP Violation
- matter and anti-matter
- fully exploiting our detector

At a B-factory...

How many B candidates can I reconstruct with $1 \mathrm{fb}^{-1}$?
$1 \mathrm{fb}^{-1} \rightarrow 1 \times 10^{6}$ B produced
but $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{D}^{0} \pi^{-}\right)=5 \times 10^{-3}$
and $\mathrm{BF}\left(\mathrm{D} \rightarrow \mathrm{K}^{-} \pi^{+}\right)=3.8 \%$ and reconstruction efficiency $\sim 10 \% \ldots$ signal yield ~ 10 events !!

Rediscovering beauty: $\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{h}+\mathbf{B} \rightarrow \mathbf{J} / \psi \mathbf{K}^{(*)}$

with very limited statistics $\left(<1 \mathrm{fb}^{-1}\right)$, Belle II can rediscover the B meson

Show capacity for charm physics in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{c} \overline{\mathbf{c}}$

- $\mathrm{D}^{0}, \mathrm{D}^{+}, \mathrm{D}^{*}$
- Cabibbo favoured and suppressed modes
... for B-physics
- hadronic modes from $\mathrm{b} \rightarrow \mathrm{C}$
- semileptonic decay modes from $\mathrm{b} \rightarrow \mathrm{c}$
that is for dominant decays.... ... we are looking for rare decays

Rare B decays

- FCNC are strongly suppressed in the SM: only loops + GIM mechanism
- Any new particle generating new diagrams can change the amplitudes

\rightarrow NP beyond the direct reach of the LHC

Three classes of SM processes

$$
\mathcal{O}_{\mathrm{obs}}=\mathcal{O}_{\mathrm{SM}}+\mathcal{O}_{\mathrm{NP}}
$$

New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

indirect search: $K_{L}^{0} \rightarrow \mu \mu$

$\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$decay can be generated by the box diagram:

in a renormalisable gauge theory, is expected to give a branching ratio of $\mathbf{g}^{4} \sim \alpha^{2} \sim \mathbf{1 0}^{-4}$, with α the fine structure constant.

$\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \mu \mu$ was not observed though expected Now BF is measured to be $(6.84 \pm 0.11) 10^{-9}$

direct search: $J / \psi \rightarrow$ ee

\rightarrow c quark eventually observed in 1974
[Ting], [Richter] J/ ψ

With the measured charm quark mass $\mathrm{m}_{\mathrm{c}} \sim 1.27 \mathrm{GeV}$, the predicted rates are in agreement with observation.

Radiative B decays

artist's view ... of the penguin diagram

- 1975: "South Area Experiment" group conceives CLEO

- 1979: First data collected
- 1980: B meson discovered
- 1983: Ds meson discovered
- 1986: CLEO II detector with Csl calorimeter installed
- 1989: b \rightarrow u transitions discovered
- 1993: b \rightarrow s penguin decays discovered
- 1995: CLEO II.V with silicon vertex detector installed
- 1999: CLEO III with RICH installed
- 2003: CLEO-c data collection started
- 2004: hc discovered and D+ meson decay constant measured
- 2008: Running ends on March 3rd
- 2009: 500th paper published

CLEO observation of $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma$ [1993]

$\mathbf{B} \rightarrow \mathbf{K}^{*} \gamma$ measuremen ${ }^{*}$
CLEO observation of $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma$ [1993]

(a) $K_{S}^{0} \pi^{0}$

$\begin{array}{ll}\sum_{\sum}^{0} 800 \\ \sum 600 & \text { (c) } K^{+} \pi^{-}\end{array}$

$\mathrm{N}_{\mathrm{s}} \sim 350$ evts Belle, submitted to PRL
$B \rightarrow K^{*} \gamma$ measurements
simultaneous fit of 4 final states \Rightarrow extraction of BFs....

but uncertainty in the hadronization process limits the ability to predict individual exclusive rates from first principles of the theory 9

$B \rightarrow K^{*} \gamma$ measurements

simultaneous fit of 4 final states \Rightarrow extraction of BFs, $\Delta_{0+}, \mathrm{A}_{\mathrm{CP}}, \Delta \mathrm{A}_{\mathrm{CP}} \ldots$

$B \rightarrow K^{*} \gamma$ measurements

simultaneous fit of 4 final states

\Rightarrow extraction of BFs, $\Delta_{0+}, \mathrm{A}_{\mathrm{CP}}, \Delta \mathrm{A}_{\mathrm{CP}}$
isospin asymmetry : $\Delta_{0+}=\frac{\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)-\Gamma\left(B^{+} \rightarrow K^{*+} \gamma\right)}{\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)+\Gamma\left(B^{+} \rightarrow K^{*+} \gamma\right)}$.

evidence of isospin violation in $K^{*} \gamma$!
11

$\underline{b} \rightarrow \mathbf{s} \gamma$

- Amplitude $\propto V_{\text {ts }}\left|C_{7}\right|$
- First penguin ever observed (93)
- Experiment:

$$
B \simeq 3.10^{-4}
$$

- $\mathrm{SM}: B=(3.36 \pm 0.23) .10^{-4}$
[Misiak et al., hep-ph/0609232]
\Rightarrow [Misiak et al, arXiv: 1503.01789]
- Strong constraint on New Physics

$\underline{b} \rightarrow \mathbf{s} \gamma \mathbf{S M}$ branching fraction

[Misiak et al, PRL98, 02202, 2007]

- From effective Hamiltonian one gets the BF
- Uncertainties due to m_{b} and m_{c} : normalise to $b \rightarrow c e \nu$ and $b \rightarrow$ ue ν [Misiak \& Steinhauser, NPB764:62,2007]
- $b \rightarrow \boldsymbol{s} \gamma$ branching fraction calculated at all NNLO orders in 2006

$$
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=(3.15 \pm 0.23) 10{ }^{4}
$$

BF very stable versus μ

13

How to estimate the branching fraction $b \rightarrow s \gamma$? Semi-inclusive (sum-of-exclusive)

[772 MBB]
[arXiv: 1411.7198] 38 modes

$$
\mathrm{M}_{\mathrm{X}_{\mathrm{s}}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}, \mathrm{E}^{*}>1.9 \mathrm{GeV}
$$

Mode ID	Final State	Mode ID	Final State
1	$K^{+} \pi^{-}$	20	$K_{S}^{0} \pi^{+} \pi^{0} \pi^{0}$
2	$K_{S}^{0} \pi^{+}$	21	$K^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$
3	$K^{+} \pi^{0}$	22	$K_{S}^{0} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$
4	$K_{S}^{0} \pi^{0}$	23	$K^{+} \eta$
5	$K^{+} \pi^{+} \pi^{-}$	24	$K_{S}^{0} \eta$
6	$K_{S}^{0} \pi^{+} \pi^{-}$	25	$K^{+} \eta \pi^{-}$
7	$K^{+} \pi^{-} \pi^{0}$	26	$K_{S}^{0} \eta \pi^{+}$
8	$K_{S}^{0} \pi^{+} \pi^{0}$	27	$K^{+} \eta \pi^{0}$
9	$K^{+} \pi^{+} \pi^{-} \pi^{-}$	28	$K_{S}^{0} \eta \pi^{0}$
10	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}$	29	$K^{+} \eta \pi^{+} \pi^{-}$
11	$K^{+} \pi^{+} \pi^{-} \pi^{0}$	30	$K_{S}^{0} \eta \pi^{+} \pi^{-}$
12	$K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$	31	$K^{+} \eta \pi^{-} \pi^{0}$
13	$K^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	32	$K_{S}^{0} \eta \pi^{+} \pi^{0}$
14	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	33	$K^{+} K^{+} K^{-}$
15	$K^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	34	$K^{+} K^{-} K_{S}^{0}$
16	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{0}$	35	$K^{+} K^{+} K^{-} \pi^{-}$
17	$K^{+} \pi^{0} \pi^{0}$	36	$K^{+} K^{-} K_{S}^{0} \pi^{+}$
18	$K_{S}^{0} \pi^{0} \pi^{0}$	37	$K^{+} K^{+} K^{-} \pi^{0}$
19	$K^{+} \pi^{-} \pi^{0} \pi^{0}$	38	$K^{+} K^{-} K_{S}^{0} \pi^{0}$

Semi-inclusive (sum-of-exclusive)
 38 modes

$\mathrm{M}_{\mathrm{X}_{\mathrm{s}}}<2.8 \mathrm{GeV} / \mathrm{c}^{2}, \mathrm{E}^{*}>1.9 \mathrm{GeV}$
possible but large systematics (difficult to estimate/trust)

Mode ID	Final State	Mode ID	Final State
1	$K^{+} \pi^{-}$	20	$K_{S}^{0} \pi^{+} \pi^{0} \pi^{0}$
2	$K_{S}^{0} \pi^{+}$	21	$K^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$
3	$K^{+} \pi^{0}$	22	$K_{S}^{0} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$
4	$K_{S}^{0} \pi^{0}$	23	$K^{+} \eta$
5	$K^{+} \pi^{+} \pi^{-}$	24	$K_{S}^{0} \eta$
6	$K_{S}^{0} \pi^{+} \pi^{-}$	25	$K^{+} \eta \pi^{-}$
7	$K^{+} \pi^{-} \pi^{0}$	26	$K_{S}^{0} \eta \pi^{+}$
8	$K_{S}^{0} \pi^{+} \pi^{0}$	27	$K^{+} \eta \pi^{0}$
9	$K^{+} \pi^{+} \pi^{-} \pi^{-}$	28	$K_{S}^{0} \eta \pi^{0}$
10	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}$	29	$K^{+} \eta \pi^{+} \pi^{-}$
11	$K^{+} \pi^{+} \pi^{-} \pi^{0}$	30	$K_{S}^{0} \eta \pi^{+} \pi^{-}$
12	$K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$	31	$K^{+} \eta \pi^{-} \pi^{0}$
13	$K^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	32	$K_{S}^{0} \eta \pi^{+} \pi^{0}$
14	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	33	$K^{+} K^{+} K^{-}$
15	$K^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	34	$K^{+} K^{-} K_{S}^{0}$
16	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{0}$	35	$K^{+} K^{+} K^{-} \pi^{-}$
17	$K^{+} \pi^{0} \pi^{0}$	36	$K^{+} K^{-} K_{S}^{0} \pi^{+}$
18	$K_{S}^{0} \pi^{0} \pi^{0}$	37	$K^{+} K^{+} K^{-} \pi^{0}$
19	$K^{+} \pi^{-} \pi^{0} \pi^{0}$	38	$K^{+} K^{-} K_{S}^{0} \pi^{0}$

$\left\{\begin{array}{l}B\left(B \rightarrow X_{s} \gamma\right)=(3.51 \pm 0.17 \pm 0.33) \times 10^{-4} \\ B\left(B \rightarrow X_{s} \gamma\right)=(3.29 \pm 0.19 \pm 0.48) \times 10^{-4}\end{array}\right.$
[syst: cross-feed, peaking BG, X_{s} fragmentation]

$\underline{B \rightarrow} \mathbf{X}_{\mathrm{s}} \gamma$ spectrum

- $\mathrm{b} \rightarrow \mathrm{s} \gamma$ is a 2 -body decay. The energy of the photon in the b quark frame is

$$
\mathrm{E}_{\gamma}=\frac{\mathrm{m}_{\mathrm{b}}}{2}\left(1-\frac{\mathrm{m}_{\mathrm{s}}^{2}}{\mathrm{~m}_{\mathrm{b}}^{2}}\right) \simeq \frac{\mathrm{m}_{\mathrm{b}}}{2}
$$

- But we measure $B \rightarrow X_{s} \gamma$ and in the B meson, the b quark is moving which smears the energy spectrum
\rightarrow Mean $\sim \frac{\mathrm{m}_{\mathrm{B}}}{2}$

\rightarrow Width \sim Fermi motion in B meson
- The BF is calculated for some energy cutoff (1.6 GeV). For other cutoffs E_{0} apply [Misiak et al, (2007)]

$$
\left(\frac{B\left(\mathrm{E}_{\gamma}>\mathrm{E}_{0}\right)}{B\left(\mathrm{E}_{\gamma}>1.6 \mathrm{GeV}\right)}\right) \simeq 1+0.15 \frac{\mathrm{E}_{0}}{1.6 \mathrm{GeV}}-0.14\left(\frac{\mathrm{E}_{0}}{1.6 \mathrm{GeV}}\right)^{2}
$$

$b \rightarrow$ s γ spectrum at Belle

One would like to measure the photon energy spectrum in $b \rightarrow s \gamma$ decays

- Be unbiased: only look at the γ
- B mesons only decay to γ via $b \rightarrow s \gamma$
- But there are indirect γ from π^{0} and η in $B \bar{B}$ events
- ... and a lot more indirect π^{0} and η in non-B \bar{B} events
\Rightarrow Lots of background at low energy

$\mathbf{b} \rightarrow \mathbf{s} \gamma$ spectrum at Belle

inclusive $B \rightarrow X_{s} \gamma$ measurement untagged
lepton tag: background suppression, low stat

Example with data sets

- $140 \mathrm{fb}^{-1} \mathrm{ON}$-resonance
- $15 \mathrm{fb}^{-1}$ OFF-resonance

Event selection:

- No kinematic constraints
- Only a high energy photon measured in $\Upsilon(4 S)$ rest frame
- Lower E_{γ} threshold (1.7 GeV)
- Hadronic events with isolated photon(s) in ECL. $\mathrm{E}^{*}>1.5 \mathrm{GeV}$.
- Veto γ from π^{0} and η
- Apply event shape cuts to suppress continuum background.

The spectrum

The spectrum

Endpoint check:
Photons from $\mathrm{e}^{+} \mathrm{e}^{-}$collisions can have an energy up to 5 GeV

But not if they come from a B decay. The kinematic limit is $\mathrm{E}^{*}=\mathrm{m}_{\mathrm{B}} / 2$.

No significant deviation from 0 observed

The spectrum

$B \bar{B}$ subtraction :
Using measured π^{0} and η spectra and some efficiency-corrected MC.

The spectrum

Raw spectrum after all cuts and background corrections

Signal yield:
24100 ± 2200 events

22

The spectrum

Efficiency corrected spectrum

$\underline{\mathbf{X}_{\mathrm{s}} \gamma \text { inclusive }}$

Lower E_{γ} threshold (1.7 GeV) $\Rightarrow 97 \%$ of the spectrum !

$$
\begin{aligned}
& \boldsymbol{B}\left(\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \gamma\right)=(\mathbf{3 . 4 5} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 4 0}) \times \mathbf{1 0}^{-\mathbf{4}}\left(\text { for } \mathrm{E}_{\gamma}^{*}>1.7 \mathrm{GeV}\right) \\
& B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.21 \pm 0.15 \pm 0.29 \pm 0.08) \times 10^{-4}\left(\text { for } \mathrm{E}_{\gamma}^{*}>1.8 \mathrm{GeV}\right) \\
& B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.06 \pm 0.41 \pm 0.26) \times 10^{-4}\left(\text { for } \mathrm{E}_{\gamma}^{*}>2.0 \mathrm{GeV}\right)
\end{aligned}
$$

- Most precise measurement of $B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)$ (lowest E_{γ}^{*} threshold)
- Crucial input for global fit to extract $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma$ decay rate
$\circ B$ is given for E_{γ} thresholds: 1.7, 1.8, 1.9, 2.0 GeV
- Systematic error is dominated b24ff - resonance subtraction !

$\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \gamma$ as an illustration

W

Sensitive to NP

NNLO SM calculation :
$B_{S M}\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.36 \pm 0.23) \times 10^{-4}$ $\left(\right.$ for $\left.E_{\gamma}>1.6 \mathrm{GeV}\right) \quad$ M.Misiak et al. [arXiv: 1503.01789] (central value increased by 6.4% compared to 2007 value) PRL 98, 022002 (2007)

The lower γ energy threshold, the smaller the model uncertainties in SM, but the larger background in measurement

Charged Higgs (2 HDM Type II) bound
(up- and down-type quarks couple to separate doublets)

$\underline{B \rightarrow} \mathbf{X}_{s} \boldsymbol{\gamma}$

$$
\begin{aligned}
& \text { WA: } B\left(B \rightarrow X_{s} \gamma\right)=(3.49 \pm 0.20) \times 10^{-4}\left(\text { for } E_{\gamma}>1.6 \mathrm{GeV}\right) \\
& \mathrm{Vm}: B\left(B \rightarrow X_{\mathrm{s}} \gamma\right)=(3.36 \pm 0.23) \times 10^{-4}\left(\text { for } E_{\gamma}>1.6 \mathrm{GeV}\right)
\end{aligned}
$$

[Misiak et al, arXiv:1503.01789]

Charged Higss bound (2 HDM TypeII): $M_{H^{+}}>400 \mathrm{GeV} @ 95 \%$ C.L.

[arXiv:1706.07414]
THDM Type II - Flavour constraints

26

Rare B decays atLHCb

LHCb is

- 1075 members, from 68 institutes in 17 countries (September 2014)
- Dedicated experiment for precision measurements of CP violation and rare decays
- Beautiful, charming, strange physics program

- $p p$ collisions at $\sqrt{s}=8(13) \mathrm{TeV}$ in RunI (RunII)
- $\quad b \bar{b}$ quark pairs produced correlated in the forward region
- Luminosity of $4 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

LHCb

LHCb

Tracking system

Measure displaced vertices and momentum of particles

Vertex and IP resolution $\sigma(\mathrm{IP}) \sim 24 \mu \mathrm{~m}$ at $\mathrm{P}_{\mathrm{T}}=2 \mathrm{GeV} / \mathrm{c}$ $\sigma_{\mathrm{BV}} \sim 16 \mu \mathrm{~m}$ in x, y

10m (p) $/ \mathrm{p}=0.4 \%-0.6 \%$ resolution
$\sigma(\mathrm{p}) / \mathrm{p}=0.4 \%-0.6 \%$ for $\mathrm{p} \in[0,100] \mathrm{GeV} / \mathrm{c}$ $\sigma\left(\mathrm{m}_{\mathrm{B}}\right) \sim 24 \mathrm{MeV}$ for two body decays

LHCb

Particle identification

Distinguish between pions, kaons, protons, electrons and muons

Kaon identification
$\epsilon_{\mathrm{K}} \sim 95 \%, \epsilon_{\pi \rightarrow \mathrm{K}}$ few $\%$

Muon identification
$\epsilon_{\mu}=98 \%, \epsilon_{\pi \rightarrow \mu}=0.6 \%$

LHCb

Trigger system
 Write out 5000 events/sec

Belle(II), LHCb side by side

Belle (II)

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{b} \overline{\mathrm{~b}}
$$

at $Y(4 S)$: 2 B's $^{\prime}\left(B^{0}\right.$ or $\left.B^{+}\right)$and nothing else \Rightarrow clean events
$\sigma_{\mathrm{b} \overline{\mathrm{b}}} \sim 1 \mathrm{nb} \Rightarrow 1 \mathrm{fb}^{-1}$ produces $10^{6} \mathrm{~B} \overline{\mathrm{~B}}$
$\sigma_{\mathrm{bb}} / \sigma_{\text {total }} \sim 1 / 4$
(in the context of B anomalies) LHCb
$p p \rightarrow b \bar{b} X$
production of $\mathrm{B}^{+}, \mathrm{B}^{0}, \mathrm{~B}_{\mathrm{s}}, \mathrm{B}_{\mathrm{c}}, \Lambda_{\mathrm{b}} \ldots$
but also a lot of other particles in the event
\Rightarrow lower reconstruction efficiencies
$\sigma_{\text {bб }}$ much higher than at the $\mathrm{Y}(4 \mathrm{~S})$

	$\sqrt{\mathbf{s}}[\mathbf{G e V}]$	$\boldsymbol{\sigma}_{\mathbf{b 5}}[\mathbf{n b}]$	$\boldsymbol{\sigma}_{\mathbf{b 5}} / \boldsymbol{\sigma}_{\mathbf{t a t}}$
HERA pA	42 GeV	~ 30	$\sim 10^{-6}$
Tevatron	2 TeV	5000	$\sim 10^{-3}$
LHC	8 TeV	$\sim 3 \times 10^{5}$	$\sim 5 \times 10^{-3}$
	14 TeV	-6×10^{5}	$\sim 10^{-2}$

$\mathbf{b} \overline{\mathbf{b}}$ production cross-section $\sim 5 \times$ Tevatron $, \sim 500,000 \times$ BaBar/Belle ! !
$\sigma_{\mathrm{b}} / \sigma_{\text {total }}$ much lower than at the $\mathrm{Y}(4 \mathrm{~S})$
\Rightarrow lower trigger efficiencies

B mesons live relativey long
mean decay length $\beta \gamma c \tau \sim 200 \mu \mathrm{~m}$
mean decay length $\beta \gamma c \tau \sim 7 \mathrm{~mm}$
data taling period(s)

$$
[1999-2010]=1 \mathrm{ab}^{-1}
$$

[run I: 2010-2012] $=3 \mathrm{fb}^{-1}$,
[run II: 2015-2018] $=2 \mathrm{fb}^{-1} \rightarrow 8 \mathrm{fb}^{-1}$?
(near) future
[Belle II from 2018] $\rightarrow 50 \mathrm{ab}^{-1}$
[LHCb upgrade from 2020]

$\underline{B}_{(s)} \rightarrow \mu \mu:$ ultra rare processes...

loop diagram + suppressed in SM + theoretically clean = an excellent place to look for new physics

Leptonic decays

$$
\begin{aligned}
& B_{(s)}^{0} \rightarrow \ell^{+} \ell^{-} \\
& B R\left(B_{(q)}^{0} \rightarrow \ell^{+} \ell^{-}\right)=\frac{\tau_{B} G_{F}^{4} M_{W}^{2} s i n^{4} \theta_{W}}{8 \pi^{\varphi}}\left|C_{10} V_{t b} V_{t q}^{*}\right| F_{B}^{2} m_{B} m_{\ell}^{2} \times \left\lvert\, \sqrt{1-\frac{4 m_{\ell}^{2}}{m_{B}^{2}}}\right.
\end{aligned}
$$

Branching ratio proportional to the lepton mass squared

$$
\frac{B R\left(B_{(q)}^{0} \rightarrow \tau^{+} \tau-\right)}{B R\left(B_{(q)}^{0} \rightarrow \mu^{+} \mu^{-}\right)} \sim \frac{m_{\tau}^{2}}{m_{\mu}^{2}} \quad \frac{B R\left(B_{(q)}^{0} \rightarrow \mu^{+} \mu^{-}\right)}{B R\left(B_{(q)}^{0} \rightarrow e^{+} e^{-}\right)} \sim \frac{m_{\mu}^{2}}{m_{e}^{2}}
$$

Helicity suppression, same reason why the pion decays into muon instead of electron \Rightarrow true only in SM

All parameters either measurable or calculable with high precision valid only in Minimal Flavour Violating Models (where the flavour structure is described only by CKM)

In a ''general'' NP scenarios, the branching ratio of B leptonic decay is given by

$$
B R\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right) \propto\left(1-\frac{4 m_{\ell}^{2}}{m_{B}^{2}}\right)\left|C_{S}-C_{S}^{\prime}\right|^{2}+\left|\left(C_{P}-C_{P}^{\prime}\right)^{2}+2 \frac{m_{\ell}^{2}}{m_{B}^{2}}\left(C_{10}-C_{10}^{\prime}\right)\right|^{2}
$$

$\underline{B}_{(\mathrm{s})} \rightarrow \mu \mu:$ ultra rare processes...

$\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$results

$\mathrm{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
first observation : 6.2 σ significance $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10}$
first evidence: 3.0σ significance

[arXiv:1703.05747]

SM: heavy state decays to $\mu^{+} \mu^{-}$ first lifetime measurement:

$$
\tau\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{ \pm}\right)=2.04 \pm 0.44 \pm 0.05 \mathrm{ps}
$$

$\mathrm{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times \mathbf{1 0}^{-9}(7.8 \sigma$ significance $)$
$B\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<3.4 \times 10^{-10} @ 90 \%$ CL

Constraints on NP models

From D. Straub, arXiv:1205.6094

