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Yesterday

Particles are excitations of SHOs

We like to expand around the harmonic terms

Perturbation theory for the unharmonic terms
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PT for 2 SHOs

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

We assume that α is small

Classically α moves energy between the two modes

How it goes in QM?

Recall the Fermi golden rule

P ∝ |A|2 × P.S. A ∼ 〈f |αx2y|i〉

The relevant thing to calculate is the transition
amplitude, A
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Transitions

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

Recall

x ∼ ax + a†
x y ∼ ay + a†

y

For a given i, when A 6= 0?

A ∼ 〈f |αx2y|i〉
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Transitions

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

Recall

x ∼ ax + a†
x y ∼ ay + a†

y

For a given i, when A 6= 0?

A ∼ 〈f |αx2y|i〉

Since H1 ∼ x2y we see that ∆ny = ±1 and ∆nx = 0,±2

What could you say if the perturbation was x2y3?
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Two SHOs with small α

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y ωy = 2ωx

Consider |i〉 = |0, 1〉

Since ωy = 2ωx only f = |2, 0〉 is allowed by energy
conservation and by the perturbation

A ∼ 〈2, 0|αx2y|0, 1〉 ∼ α〈2, 0|(ax+a†
x)(ax+a†

x)(ay+a†
y)|0, 1〉

ay in y annihilates the y “particle” and (a†
x)2 in x2

creates two x “particles”

It is a decay of a particle y into two x particles with

width Γ ∝ α2 and τ = 1/Γ
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Even More PT

H1 = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

Calculate y → 3x using 2nd order PT

A ∼ 〈3, 0, 0|O|0, 1, 0〉 O ∼
∑ 〈3, 0, 0|V ′|n〉〈n|V ′|0, 1, 0〉

En − E0,1,0

Which intermediate states? |1, 0, 1〉 and |2, 1, 1〉

A1 = |0, 1, 0〉
β
−→ |1, 0, 1〉

α
−→ |3, 0, 0〉

A2 = |0, 1, 0〉
α
−→ |2, 1, 1〉

β
−→ |3, 0, 0〉

The total amplitude is then

A ∝ αβ

(

#

∆E1
+

#

∆E2

)

∝ αβ

(

#

∆E2

)
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Closer look

V ′ = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

We look at A = |0, 1, 0〉
β
−→ |1, 0, 1〉

α
−→ |3, 0, 0〉

y

β

x

α

x

x
z A ∝

αβ

∆E

What about the other amplitude?
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Feynman diagrams
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Using PT for fields

For SHOs we have xi ∼ ai + a†
i

For fields we then have

φ ∼
∫

[

a(k) + a†(k)
]

dk

Quantum field = creation and annihilation operators
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Feynman diagrams

A graphical way to do perturbation theory with fields

Unlike SHOs before, a particle can have any energy as
long as E ≥ m

Operators with 3 or more fields generate transitions
between states. They give decays and scatterings

Decay rates and scattering cross sections are
calculated using the Golden Rule

Amplitudes are calculated from L

We generate graphs where lines are particles and
vertices are interactions
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Examples of vertices

φ1

φ2

φ1

λL = λφ2
1φ2 :

φ φ

φ φ

λL = λφ4 :
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Calculations

We usually care about 1 → n or 2 → n processes

We need to make sure we have energy conservation

External (Internal) particles are called on(off)–shell

On-shell: E2 = p2 +m2

Off-shell: E2 6= p2 +m2

A = the product of all the vertices and internal lines

Each internal line with qµ gives suppression

1

m2 − q2

There are many more rules to get all the factors right
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Examples of amplitudes

L = λ1XY Z + λ2X
2Z Γ(Z → XY )

Energy conservation condition

Draw the diagram and estimate the amplitude

Y. Grossman Intro to QFT (2) JENNIFER, Aug. 1, 2018 p. 13



Examples of amplitudes

L = λ1XY Z + λ2X
2Z Γ(Z → XY )

Energy conservation condition mZ > mX +mY

Draw the diagram and estimate the amplitude

Z

λ1

X

Y

A ∝ λ1
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Examples of amplitudes (2)

L = λ1XY Z + λ2X
2Z Γ(Y → 3X)

Energy conservation condition

Draw the diagram and estimate the amplitude
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Examples of amplitudes (2)

L = λ1XY Z + λ2X
2Z Γ(Y → 3X)

Energy conservation condition mY > 3mX

Draw the diagram and estimate the amplitude

Y

λ1

X

λ2

X

X
Z A ∝ λ1λ2 ×

1

∆E2
Z

= λ1λ2 ×
1

m2
Z − q2
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Examples of amplitudes (HW)

L = λ1XY Z + λ2X
2Z σ(XX → XY )

Energy conservation condition

Draw the diagram and estimate the amplitude
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Some summary

Quadratic terms describe free fields. Free particles
cannot be created nor decay

We use perturbation theory were terms with 3 or more
fields in L are considered small

These terms can generate and destroy particles and
give dynamics

Feynman diagrams are a tool to calculate transition
amplitudes

Many more details are needed to get calculation done

Once calculations and experiments to check them are
done, we can test our theory

Y. Grossman Intro to QFT (2) JENNIFER, Aug. 1, 2018 p. 16



Symmetries
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How to “built” Lagrangians

L is:

The most general one that is invariant under some
symmetries

We work up to some order (usually 4)

We need the following input:

What are the symmtires we impose

What DOFs we have and how they transform under
the symmtry

The output is

A Lagrangian with N parameters

We need to measure its parameters and test it
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Symmetries and representations

Example: 3d real space in classical mechanics

We require that L is invariant under rotation

All our DOFs are assigned into vector representations
(~r1, ~r2, ...)

We construct invariants from these DOFs. They are
called singlets or scalars

Cij ≡ ~ri · ~rj

We then require that V is a function of the Cijs
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Generalizations

In mechanics, ~r lives in 3d real space and is a vector

Fields do not live in real space. They live in some
mathematical space

They also do not have to be vectors, but can be scalars
or tensors (representation)

The idea is similar to what we did in mechanics

We require L to be invariant under rotation in that
mathematical space

Thus L depends only on combinations of fields that
form singlets

All this is related to a subject called Lie groups

We usually care about SO(N), SU(N) and U(1)
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Combining representations

It is all about generating singlets

We all know that we can combine vectors in real space
to generate singlets

We also know how to make a spin zero from 2 spin half
spinors (spin zero is a singlet!)

There is a generalization of this procedure to any
mathematical space

As of now, all we need to know are SU(3), SU(2) and
U(1)
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Invariant of complex numbers

U(1) is rotation in 1d complex space

Each complex number comes with a q that tells us how
much it rotates

When we rotate the space by an angle θ, the number
rotate as

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗
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Invariant of complex numbers

U(1) is rotation in 1d complex space

Each complex number comes with a q that tells us how
much it rotates

When we rotate the space by an angle θ, the number
rotate as

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗ XY Z∗ X3Z∗ Y 2X∗Z∗
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SU(2)

U(2) is rotation in 2d complex space. We have
U(2) = SU(2) × U(1)

SU(2) is localy the same as rotation in 3d real space

Rotations in this space are non-Abelian
(non-commutative)

It depends on the representation: scalar, spinor, vector

Spin in QM is described by SU(2) rotations, so we use
the same language to describe it

For the SM all we care is that 1/2 × 1/2 ∋ 0 so we know
how to generate singlets

How can we generate invarints from spin 1/2 and spin
3/2?
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SU(3)

U(3) is rotation in 3d complex space. We have
U(3) = SU(3) × U(1)

The representations we care about are singlets, triplets
and octets

Unlike SU(2), in SU(3) we have complex

representations, 3 and 3̄

The three quarks form a triplet (the three colors)

To form a singlet we need to know that

3 × 3̄ ∋ 1 3 × 3 × 3 ∋ 1

This is why we have baryons and mesons
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A game

A game calls “building invariants”

Symmetry is SU(3) × SU(2) × U(1)

U(1): Add the numbers (X̄ has charge −q)

SU(2): 2 × 2 ∋ 1 and recall that 1 is a singlet

SU(3): we need 3 × 3̄ ∋ 1 and 3 × 3 × 3 ∋ 1

Fields are

Q(3, 2)1 U(3, 1)4 D(3, 1)−2 H(1, 2)3

What 3rd and 4th order invariants can we built?

(HH∗)2 H3 UDD QUD HQU∗

HW: Find more invariants
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Lorentz invariants
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Lorentz invariants

The representations we care about are

Singlet: Spin zero (scalars, denote by φ)

LH and RH fields: Spin half (fermions, ψL, ψR)

Vector: Spin one (gauge boson, denote by Aµ)

Fermions are more complicated

L ∼ ψ̄∂µγ
µψ

Since L has dimension 4, ψ is dimension 3/2

For fermions when we expand up to 4th order we can
have at most two fermion fields

Under Lorentz, the basic fields are left-handed and

right-handed. A mass term must involve both mψ̄LψR
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Local symmetires
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Local symmetry

Basic idea: rotations depend on x and t

φ(xµ) → eiqθφ(xµ)
local
−−→ φ(xµ) → eiqθ(xµ)φ(xµ)

It is kind of logical and we think that all imposed
symmetries in Nature are local

The kinetic term |∂µφ|2 in not invariant

We want a kinetic term (why?)

We can save the kinetic term if we add a field that is

Massless

Spin 1

Adjoint representation: q = 0 for U(1), triplet for
SU(2), and octet for SU(3)
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Gauge symmetry

Fermions are called matter fields. What they are and
their representation is an input

Gauge fields are known as force fields

Local symmetries ⇒ force fields
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