Introduction to the SM

Yuval Grossman

Cornell

Y. Grossman

Intro to SM (3)

Yesterday

- Symmetries and the idea of local symmetry
- We can do it if we add a "gauge field": a spin one massless particle
- Today: how we do it and move on

Gauge symmetry

New field A_{μ} . How we couple it?

Recall classical electromagnetism

$$H = \frac{p^2}{2m} \Rightarrow H = \frac{(p - qA_i)^2}{2m}$$

In QFT, for a local U(1) symmetry and a field with charge q

$$\partial_{\mu} \to D_{\mu} \qquad D_{\mu} = \partial_{\mu} + iqA_{\mu}$$

We get interaction from the kinetic term

$$|D_{\mu}\phi|^{2} = |\partial_{\mu}\phi + iqA_{\mu}\phi|^{2} \ni qA\phi^{2} + q^{2}A^{2}\phi^{2}$$

• The interaction is proportional to q

Y. Grossman

Intro to SM (3)

The two aspects of symmetries

Thinking about E&M

- Charge conservation
- The force proportional to the charge

Q: Which of these come from the "global" aspect and which from the "local" aspect of the symmetry?

Accidental symmetries

- We only impose local symmetries
- Yet, because we truncate the expansion, we can get symmetries as output
- They are global, and are called accidental
- Example: U(1) with X(q = 1) and Y(q = -4)

$$V(XX^*, YY^*) \Rightarrow U(1)_X \times U(1)_Y$$

- X^4Y breaks this symmetry
- In the SM baryon and lepton numbers are accidental symmetries

Y. Grossman

Intro to SM (3)

Intro to SM (3)

Breaking a symmetry

Y. Grossman

Intro to SM (3)

SSB

- A situation that we have when the Ground state is degenerate
- By choosing a ground state we break the symmetry
- We choose to expend around a point that does not respect the symmetry
- PT only works when we expand around a minimum

What is the different between a broken symmetry and no symmetry?

SSB implies relations between parameters

Y. Grossman

Intro to SM (3)

SSB

Symmetry is $x \to -x$ and we keep up to x^4

$$f(x) = a^2 x^4 - 2b^2 x^2$$
 $x_{\min} = \pm b/a$

We choose to expand around +b/a and use $u \to x - b/a$

$$f(x) = 4b^2u^2 + 4bau^3 + a^2u^4$$

- **•** No $u \rightarrow -u$ symmetry
- The $x \to -x$ symmetry is hidden
- A general function has 3 parameters $c_2u^2 + c_3u^3 + c_4u^4$
- SSB implies a relation between them

$$c_3^2 = 4c_2c_4$$

Y. Grossman

Intro to SM (3)

Partial SSB

Think about a vector in 3d. What is broken?

Intro to SM (3)

SSB in QFT

When we expand the field around a minimum that is not invariant under a symmetry

$$\phi(x_{\mu}) \to v + h(x_{\mu})$$

- It breaks the symmetries that ϕ is not a singlet under
- Masses to other fields via Yukawa interactions

$$\phi X^2 \to (v+h)X^2 = vX^2 + \dots$$

Gauge fields of the broken symmetries also get mass

$$|D_{\mu}\phi|^{2} = |\partial_{\mu}\phi + iqA_{\mu}\phi|^{2} \ni A^{2}\phi^{2} \to v^{2}A^{2}$$

Y. Grossman

Intro to SM (3)

Building Lagrangians

- Choosing the generalized coordinates (fields)
- Imposing symmetries and how fields transform (input)
- The Lagrangian is the most general one that obeys the symmetries
- We truncate it at some order, usually fourth

Y. Grossman

Intro to SM (3)

The SM

Intro to SM (3)

The SM

Input: Symmetries and fields

Symmetry: 4d Poincare and

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

- Fields:
 - 3 copies of QUDLE fermions

$$Q_L(3,2)_{1/6} \quad U_R(3,1)_{2/3} \quad D_R(3,1)_{-1/3}$$

 $L_L(1,2)_{-1/2} \quad E_R(1,1)_{-1}$

One scalar

 $\phi(1,2)_{+1/2}$

Y. Grossman

Intro to SM (3)

Then Nature is described by

• Output: the most general \mathcal{L} up to dim 4

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$$

- This model has a $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$ accidental symmetry
- Initial set of measuremnts to find the parameters
 - SSB: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$
 - Fermion masses, gauge couplings and mixing angles

The SM pass (almost) all of it tests

Y. Grossman

Intro to SM (3)

The gauge interactions

Intro to SM (3)

The gauge part

$SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{EM}$

Three parts, each look so different...

- QED photon interaction: Perturbation theory
- QCD gluon interaction: Confinement and asymptotic freedom

JENNIFER, Aug. 2, 2018 p. 17

Electro-weak: SSB and massive gauge bosons

Intro to SM (3)

 \mathcal{L}_{kin} and $SU(2) \times U(1)$

Four gauge bosons DOFs

$$W^{\mu}_{a} \qquad B^{\mu}$$

The covariant derivative is

$$D^{\mu} = \partial^{\mu} + igW^{\mu}_{a}T_{a} + ig'YB^{\mu}$$

- Two parameters g and g'
- Y is the U(1) charge of the field D_{μ} work on
- T_a is the SU(2) representation
- $T_a = 0$ for singlets. $T_a = \sigma_a/2$ for doublets
- Write D_{μ} for $L(1,2)_{-1/2}$ and $E(1,1)_{-1}$

Explicit examples

$$D^{\mu} = \partial^{\mu} + igW^{\mu}_{a}T_{a} + ig'YB^{\mu}$$

• Write D_{μ} for $L(1,2)_{-1/2}$ and $E(1,1)_{-1}$

$$D^{\mu}L = \left(\partial^{\mu} + \frac{i}{2}gW^{\mu}_{a}\sigma_{a} - \frac{i}{2}g'B^{\mu}\right)L$$
$$D^{\mu}E = \left(\partial^{\mu} - ig'B^{\mu}\right)E$$

• HW: Using $\phi(1,2)_{1/2}$ write $D^{\mu}\phi$

Y. Grossman

Intro to SM (3)

SSB in the SM

$$-\mathcal{L}_{Higgs} = \lambda \phi^4 - \mu^2 \phi^2 = \lambda (\phi^2 - v^2)^2$$

- We measure the fact that $\mu^2 > 0$ by having SSB
- The minimum is at $|\phi| = v$
- ϕ has 4 DOFs. We can choose

$$\langle \phi_1 \rangle = \langle \phi_2 \rangle = \langle \phi_4 \rangle = 0 \qquad \langle \phi_3 \rangle = v$$

- It leads to: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$
- We call the remaining symmetry EM
- Could we "choose" the vev in the neutral direction?
- We left with one real scalal field: the Higgs boson

QED

Where is QED in all of this?

$$Q = T_3 + Y$$

• We can write explicitly for $L(1,2)_{-1/2}$ and $\phi(1,2)_{1/2}$

$$L_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \qquad \phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

We can "tell" the differet component because we have SSB

Y. Grossman

Intro to SM (3)

Spectrum

Intro to SM (3)

Gauge boson masses

- $\blacksquare W_1, W_2, W_3, B$
- Gauge bosons masses from $|D_{\mu}\phi|^2$ (HW: do it)
- Diagonalzing the mass matrix the masses are

$$M_{W^+}^2 = M_{W^-}^2 = \frac{1}{4}g^2v^2 \qquad M_Z^2 = \frac{1}{4}(g^2 + g'^2)v^2 \qquad M_A^2 = 0$$

The mass eigenstates

$$W^{\pm} = \frac{1}{\sqrt{2}} (W_1 \mp i W_2) \qquad \tan \theta_W \equiv \frac{g'}{g}$$

 $Z = \cos \theta_W W_3 - \sin \theta_W B \qquad A = \sin \theta_W W_3 + \cos \theta_W B$

• We have a θ_W rotation from (W_3, B) to (Z, A)

Y. Grossman

Intro to SM (3)

The $\rho = 1$ relation

We get the following testable relation

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1 \qquad \tan \theta_W \equiv \frac{g'}{g}$$

The above is a signal of SSB

Intro to SM (3)

Experimental tests

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1 \qquad \tan \theta_W \equiv \frac{g'}{g}$$

- High energy: Open your pdg and check W and Z decays to leptons. What do you expect to see?
- Z decays to lepton actually measures $\sin^2 \theta_W \approx 0.23$
- HW: Calculate $\Gamma(Z \to \nu \bar{\nu}) / \Gamma(Z \to e^+ e^-)$, get $\sin^2 \theta_W$ from the data and check the $\rho = 1$ prediction

JENNIFER, Aug. 2, 2018 p. 25

Intro to SM (3)

Also low energy data tests

Y. Grossman

Experimental tests of
$$\rho = 1$$

• From the $\rho = 1$ relation

$$\frac{m_W^2}{m_Z^2} = \cos^2 \theta_W \approx \left(\frac{80.4}{91.2}\right)^2 \approx 0.77 \quad \Rightarrow \quad \sin^2 \theta_W \approx 0.23$$

 \checkmark Z decays to leptons

$$\Gamma(Z \to \ell \ell) \sim \sum_{L,R} (T_3 - Q \sin^2 \theta_W)^2$$

$$\Gamma(Z \to \ell^+ \ell^-) \sim (1/2 - \sin^2 \theta_W)^2 + (\sin^2 \theta_W)^2 \sim 1/8$$

$$\Gamma(Z \to \nu \bar{\nu}) \sim (1/2)^2 \sim 1/4 \implies r \equiv \Gamma_\ell / \Gamma_{\rm inv} \sim 1/6$$

• PDG: $\Gamma_{\ell} = 3.37\%$ and $\Gamma_{\rm inv} = 20.00\% \Rightarrow r \sim 1/6$

Y. Grossman

Intro to SM (3)