Introduction to the SM

Yuval Grossman

Cornell

Yesterday

- Symmetries and the idea of local symmetry
- We can do it if we add a "gauge field": a spin one massless particle
- Today: how we do it and move on

Gauge symmetry

New field A_{μ}. How we couple it?

- Recall classical electromagnetism

$$
H=\frac{p^{2}}{2 m} \Rightarrow H=\frac{\left(p-q A_{i}\right)^{2}}{2 m}
$$

- In QFT, for a local $U(1)$ symmetry and a field with charge q

$$
\partial_{\mu} \rightarrow D_{\mu} \quad D_{\mu}=\partial_{\mu}+i q A_{\mu}
$$

- We get interaction from the kinetic term

$$
\left|D_{\mu} \phi\right|^{2}=\left|\partial_{\mu} \phi+i q A_{\mu} \phi\right|^{2} \ni q A \phi^{2}+q^{2} A^{2} \phi^{2}
$$

- The interaction is proportional to q

The two aspects of symmetries

Thinking about E\&M

- Charge conservation
- The force proportional to the charge

Q: Which of these come from the "global" aspect and which from the "local" aspect of the symmetry?

Accidental symmetries

- We only impose local symmetries
- Yet, because we truncate the expansion, we can get symmetries as output
- They are global, and are called accidental
- Example: $U(1)$ with $X(q=1)$ and $Y(q=-4)$

$$
V\left(X X^{*}, Y Y^{*}\right) \Rightarrow U(1)_{X} \times U(1)_{Y}
$$

- $X^{4} Y$ breaks this symmetry
- In the SM baryon and lepton numbers are accidental symmetries

SSB

Breaking a symmetry

Y. Grossman

Intro to SM (3)
JENNIFER, Aug. 2, 2018

SSB

- A situation that we have when the Ground state is degenerate
- By choosing a ground state we break the symmetry
- We choose to expend around a point that does not respect the symmetry
- PT only works when we expand around a minimum

What is the different between a broken symmetry and no symmetry?

SSB implies relations between parameters
Y. Grossman

Intro to SM (3)
JENNIFER, Aug. 2, 2018

SSB

Symmetry is $x \rightarrow-x$ and we keep up to x^{4}

$$
f(x)=a^{2} x^{4}-2 b^{2} x^{2} \quad x_{\min }= \pm b / a
$$

We choose to expand around $+b / a$ and use $u \rightarrow x-b / a$

$$
f(x)=4 b^{2} u^{2}+4 b a u^{3}+a^{2} u^{4}
$$

- No $u \rightarrow-u$ symmetry
- The $x \rightarrow-x$ symmetry is hidden
- A general function has 3 parameters $c_{2} u^{2}+c_{3} u^{3}+c_{4} u^{4}$
- SSB implies a relation between them

$$
c_{3}^{2}=4 c_{2} c_{4}
$$

Partial SSB

Think about a vector in 3d. What is broken?

SSB in QFT

- When we expand the field around a minimum that is not invariant under a symmetry

$$
\phi\left(x_{\mu}\right) \rightarrow v+h\left(x_{\mu}\right)
$$

- It breaks the symmetries that ϕ is not a singlet under
- Masses to other fields via Yukawa interactions

$$
\phi X^{2} \rightarrow(v+h) X^{2}=v X^{2}+\ldots
$$

- Gauge fields of the broken symmetries also get mass

$$
\left|D_{\mu} \phi\right|^{2}=\left|\partial_{\mu} \phi+i q A_{\mu} \phi\right|^{2} \ni A^{2} \phi^{2} \rightarrow v^{2} A^{2}
$$

Building Lagrangians

- Choosing the generalized coordinates (fields)
- Imposing symmetries and how fields transform (input)
- The Lagrangian is the most general one that obeys the symmetries
- We truncate it at some order, usually fourth

The SM

The SM

Input: Symmetries and fields

- Symmetry: 4d Poincare and

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

- Fields:
- 3 copies of QUDLE fermions

$$
\begin{aligned}
& Q_{L}(3,2)_{1 / 6} \quad U_{R}(3,1)_{2 / 3} \quad D_{R}(3,1)_{-1 / 3} \\
& L_{L}(1,2)_{-1 / 2} \quad E_{R}(1,1)_{-1}
\end{aligned}
$$

- One scalar

$$
\phi(1,2)_{+1 / 2}
$$

Then Nature is described by

- Output: the most general \mathcal{L} up to $\operatorname{dim} 4$

$$
\mathcal{L}=\mathcal{L}_{\text {kin }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }}
$$

- This model has a $U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$ accidental symmetry
- Initial set of measuremnts to find the parameters
- SSB: $S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{E M}$
- Fermion masses, gauge couplings and mixing angles

The SM pass (almost) all of it tests

The gauge interactions

Y. Grossman

Intro to SM (3)
JENNIFER, Aug. 2, 2018 p. 16

The gauge part

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \rightarrow S U(3)_{C} \times U(1)_{E M}
$$

Three parts, each look so different...

- QED - photon interaction: Perturbation theory
- QCD - gluon interaction: Confinement and asymptotic freedom
- Electro-weak: SSB and massive gauge bosons

$\mathcal{L}_{\text {kin }}$ and $S U(2) \times U(1)$

- Four gauge bosons DOFs

$$
W_{a}^{\mu} \quad B^{\mu}
$$

- The covariant derivative is

$$
D^{\mu}=\partial^{\mu}+i g W_{a}^{\mu} T_{a}+i g^{\prime} Y B^{\mu}
$$

- Two parameters g and g^{\prime}
- Y is the $U(1)$ charge of the field D_{μ} work on
- T_{a} is the $S U(2)$ representation
- $T_{a}=0$ for singlets. $T_{a}=\sigma_{a} / 2$ for doublets
- Write D_{μ} for $L(1,2)_{-1 / 2}$ and $E(1,1)_{-1}$

Explicit examples

$$
D^{\mu}=\partial^{\mu}+i g W_{a}^{\mu} T_{a}+i g^{\prime} Y B^{\mu}
$$

- Write D_{μ} for $L(1,2)_{-1 / 2}$ and $E(1,1)_{-1}$

$$
\begin{aligned}
D^{\mu} L & =\left(\partial^{\mu}+\frac{i}{2} g W_{a}^{\mu} \sigma_{a}-\frac{i}{2} g^{\prime} B^{\mu}\right) L \\
D^{\mu} E & =\left(\partial^{\mu}-i g^{\prime} B^{\mu}\right) E
\end{aligned}
$$

- HW: Using $\phi(1,2)_{1 / 2}$ write $D^{\mu} \phi$

SSB in the SM

$$
-\mathcal{L}_{\text {Higgs }}=\lambda \phi^{4}-\mu^{2} \phi^{2}=\lambda\left(\phi^{2}-v^{2}\right)^{2}
$$

- We measure the fact that $\mu^{2}>0$ by having SSB
- The minimum is at $|\phi|=v$
- ϕ has 4 DOFs. We can choose

$$
\left\langle\phi_{1}\right\rangle=\left\langle\phi_{2}\right\rangle=\left\langle\phi_{4}\right\rangle=0 \quad\left\langle\phi_{3}\right\rangle=v
$$

- It leads to: $S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{E M}$
- We call the remaining symmetry EM
- Could we "choose" the vev in the neutral direction?
- We left with one real scalal field: the Higgs boson

QED

- Where is QED in all of this?

$$
Q=T_{3}+Y
$$

- We can write explicitly for $L(1,2)_{-1 / 2}$ and $\phi(1,2)_{1 / 2}$

$$
L_{L}=\binom{\nu_{L}}{e_{L}} \quad \phi=\binom{\phi^{+}}{\phi^{0}}
$$

- We can "tell" the differet component because we have SSB

Spectrum

Gauge boson masses

- W_{1}, W_{2}, W_{3}, B
- Gauge bosons masses from $\left|D_{\mu} \phi\right|^{2} \quad$ (HW: do it)
- Diagonalzing the mass matrix the masses are

$$
M_{W^{+}}^{2}=M_{W^{-}}^{2}=\frac{1}{4} g^{2} v^{2} \quad M_{Z}^{2}=\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) v^{2} \quad M_{A}^{2}=0
$$

- The mass eigenstates

$$
\begin{array}{rl}
W^{ \pm}=\frac{1}{\sqrt{2}}\left(W_{1} \mp i W_{2}\right) & \tan \theta_{W} \equiv \frac{g^{\prime}}{g} \\
Z=\cos \theta_{W} W_{3}-\sin \theta_{W} B & A=\sin \theta_{W} W_{3}+\cos \theta_{W} B
\end{array}
$$

- We have a θ_{W} rotation from $\left(W_{3}, B\right)$ to (Z, A)

The $\rho=1$ relation

We get the following testable relation

$$
\rho \equiv \frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}=1 \quad \tan \theta_{W} \equiv \frac{g^{\prime}}{g}
$$

The above is a signal of SSB

Experimental tests

$$
\rho \equiv \frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}=1 \quad \tan \theta_{W} \equiv \frac{g^{\prime}}{g}
$$

- High energy: Open your pdg and check W and Z decays to leptons. What do you expect to see?
- Z decays to lepton actually measures $\sin ^{2} \theta_{W} \approx 0.23$
- HW: Calculate $\Gamma(Z \rightarrow \nu \bar{\nu}) / \Gamma\left(Z \rightarrow e^{+} e^{-}\right)$, get $\sin ^{2} \theta_{W}$ from the data and check the $\rho=1$ prediction
- Also low energy data tests

Experimental tests of $\rho=1$

- From the $\rho=1$ relation

$$
\frac{m_{W}^{2}}{m_{Z}^{2}}=\cos ^{2} \theta_{W} \approx\left(\frac{80.4}{91.2}\right)^{2} \approx 0.77 \Rightarrow \sin ^{2} \theta_{W} \approx 0.23
$$

- Z decays to leptons

$$
\begin{aligned}
\Gamma(Z \rightarrow \ell \ell) & \sim \sum_{L, R}\left(T_{3}-Q \sin ^{2} \theta_{W}\right)^{2} \\
\Gamma\left(Z \rightarrow \ell^{+} \ell^{-}\right) & \sim\left(1 / 2-\sin ^{2} \theta_{W}\right)^{2}+\left(\sin ^{2} \theta_{W}\right)^{2} \sim 1 / 8 \\
\Gamma(Z \rightarrow \nu \bar{\nu}) & \sim(1 / 2)^{2} \sim 1 / 4 \Rightarrow r \equiv \Gamma_{\ell} / \Gamma_{\mathrm{inv}} \sim 1 / 6
\end{aligned}
$$

- PDG: $\Gamma_{\ell}=3.37 \%$ and $\Gamma_{\mathrm{inv}}=20.00 \% \quad \Rightarrow \quad r \sim 1 / 6$

