Introduction to QFT

Yuval Grossman

Cornell

General remarks

- I have to make assumptions about what you know
- Please ask questions!
- Email: yg73@cornell.edu
- The plan:
- Intro to QFT
- Intro to the SM
- Flavor (quarks and leptons)

What is HEP?

What is HEP

Find the basic laws of Nature

More formally

$\mathcal{L}=$?

- We have quite a good answer
- It is very elegant, it is based on axioms and symmetries
- The generalized coordinates are fields
- We use particles to answer this question

What is mechanics?

- Answer the question: what is $x(t)$?
- A system can have many DOFs, and then we seek to find $\vec{x}(t) \equiv x_{1}(t), x_{2}(t), \ldots$
- Once we know $\vec{x}(t)$ we know any observable
- Solving for $q_{1} \equiv x_{1}+x_{2}$ and $q_{2} \equiv x_{1}-x_{2}$ is the same as solving for x_{1} and x_{2}
- The idea of generalized coordinates is very important

How do we solve mechanics?

How do we find $x(t)$?

- $x(t)$ minimizes the action, S. This is an axiom
- There is one action for the whole system

$$
S=\int_{t_{1}}^{t_{2}} L(x, \dot{x}) d t
$$

- The solution is given by the E-L equation

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x}
$$

- Once we know L we can find $x(t)$ up to initial conditions
- Mechanics is reduced to the question "what is L ?"

An example: Newtonian mechanics

We assume a particle with one DOF and

$$
L=\frac{m v^{2}}{2}-V(x)
$$

- We use the E-L equation

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x} \quad L=\frac{m v^{2}}{2}-V(x)
$$

- The solution is $-V^{\prime}(x)=m \dot{v}$, aka $F=m a$
- Here $F=m a$ is the output, not the starting point!
- Input is L. We need to measure the parameters
- So how do we find what is L ?

What is L ?

L is the most general one that is invariant under some symmetries

- We (again!) rephrase the question. Now we ask what are the symmetries of the system that lead to L
- What are the symmetries in Newtonian mechanics?

What is field theory

What is a field?

- In math: something that has a value in each point. We can denote it as $\phi(x, t)$
- Temperature (scalar field)
- Wind (vector field)
- Mechanical string (?)
- The density of people (?)
- Electric and magnetic fields (vector fields)
- How good is the field description of each of these?
- In physics, fields used to be associated with sources, but now we know that fields are fundamental

A familiar example: the EM field

- Maxwall Eqs. leads to a wave equations

$$
\frac{\partial^{2} E(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} E(x, t)}{\partial x^{2}}
$$

- The solution is (A and φ_{0} depend on IC)

$$
E(x, t)=A \cos \left(\omega t-k x+\varphi_{0}\right), \quad \omega=c k
$$

- Some important implications of the result
- Each mode has its own amplitude, $A(\omega)$
- The energy in each ω is conserved
- The superposition principle
- Are the statements above exact?

How to deal with generic field theories

- $\phi(x, t)$ has an infinite number of DOF. It can be an approximation for many (but finite) DOF
- To solve mechanics of fields we need to find $\phi(x, t)$
- Here ϕ is the generalized coordinate, while x and t are treated the same (nice!)
- In relativity, x and t are also treated the same
- What is better x_{μ} or t_{μ} ?

Solving field theory

Generalization of mechanics to systems with few "times"

- We still need to minimize S

$$
S=\int \mathcal{L} d x d t \quad \mathcal{L}\left[\phi(x, t), \dot{\phi}(x, t), \phi^{\prime}(x, t)\right]
$$

- We usually require Lorentz invariant (and use $c=1$)

$$
S=\int \mathcal{L} d^{4} x \quad \mathcal{L}\left[\phi(x, t), \partial_{\mu} \phi\left(x_{\mu}\right)\right]
$$

E-L for field theory

- We also have an E-L equation for field theories

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)-\frac{d}{d x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right)=\frac{\partial L}{\partial \phi}
$$

- In relativistic notation

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)=\frac{\partial \mathcal{L}}{\partial \phi}
$$

- We have a way to solve field theory, just like mechanics. Give me \mathcal{L} and I can know everything!
- Just like in Newtonian mechanics, we want to get \mathcal{L} from symmetries!

Example: a free field theory

- A free particle L has just a kinetic term
- A free field: The "kinetic term" is promoted

$$
T \propto\left(\frac{d x}{d t}\right)^{2} \Rightarrow T \propto\left(\frac{d \phi}{d t}\right)^{2}-\left(\frac{d \phi}{d x}\right)^{2} \equiv\left(\partial_{\mu} \phi\right)^{2}
$$

- Free particles, and thus free fields, only have kinetic terms

$$
\mathcal{L}=\left(\partial_{\mu} \phi\right)^{2} \Rightarrow \frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial t^{2}}
$$

- An \mathcal{L} of a free field gives a wave equation
- As in Newtonian mechanics, what used to be the starting point, here is the final result

Harmonic oscillator

The harmonic oscillator

Why do we care so much about harmonic oscillators?

- Because we really care about springs?
- Because we really care about pendulums?

The harmonic oscillator

Why do we care so much about harmonic oscillators?

- Because we really care about springs?
- Because we really care about pendulums?

Because almost any function around its minimum can be approximated as a harmonic function!

- Indeed, we usually expand the potential around one of its minima
- We identify a small parameter, and keep only a few terms in a Taylor expansion

Classic harmonic oscillator

$$
V=\frac{k x^{2}}{2}
$$

We solve the E-L equation and get

$$
x(t)=A \cos (\omega t) \quad \omega^{2}=\frac{k}{m}
$$

- The period does not depend on the amplitude
- Energy is conserved

Which of the above two statements is a result of the approximation of keeping only the harmonic term in the expansion?

Coupled oscillators

A clip of coupled oscillators

Coupled oscillators

- There are normal modes
- The normal modes are not "local" as in the case of one oscillator
- The energy of each mode is conserved
- This is an approximation!
- Once we keep non-harmonic terms energy moves between modes

$$
V(x, y)=\frac{k_{1} x^{2}}{2}+\frac{k_{2} y^{2}}{2}+\alpha x^{2} y
$$

- What determines the rate of energy transfer?

Things to think about

- Relations between harmonic oscillators and free fields

The quantum SHO

Y. Grossman

Intro to QFT (1)
JENNIFER, July 31, 2018
p. 22

What is QM?

- Many ways to formulate QM
- For example, we promote $x \rightarrow \hat{x}$
- We solve QM when we know the wave function $\psi(x, t)$
- How many wave functions describe a system?
- The wave function is mathematically a field

The quantum SHO

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2} \quad E_{n}=(n+1 / 2) \hbar \omega
$$

- We also like to use

$$
H=\left(a^{\dagger} a+1 / 2\right) \hbar \omega \quad a, a^{\dagger} \sim x \pm i p \quad x \sim a+a^{\dagger}
$$

- We call a^{\dagger} and a creation and annihilation operators

$$
E=a|n\rangle \propto|n-1\rangle \quad a^{\dagger}|n\rangle \propto|n+1\rangle
$$

- So far this is abstract. What can we do with it?

Couple oscillators

Consider a system with 2 DOFs and same mass with

$$
V(x, y)=\frac{k x^{2}}{2}+\frac{k y^{2}}{2}+\alpha x y
$$

The normal modes are

$$
q_{ \pm}=\frac{1}{\sqrt{2}}(x \pm y) \quad \omega_{ \pm}^{2}=\frac{k \pm \alpha}{m}
$$

What is the QM spectrum of this system?

Couple oscillators

Consider a system with 2 DOFs and same mass with

$$
V(x, y)=\frac{k x^{2}}{2}+\frac{k y^{2}}{2}+\alpha x y
$$

The normal modes are

$$
q_{ \pm}=\frac{1}{\sqrt{2}}(x \pm y) \quad \omega_{ \pm}^{2}=\frac{k \pm \alpha}{m}
$$

What is the QM spectrum of this system?

$$
\left(n_{+}+1 / 2\right) \hbar \omega_{+}+\left(n_{-}+1 / 2\right) \hbar \omega_{-} \quad\left|n_{+}, n_{-}\right\rangle
$$

Couple oscillators and Fields

- With many DOFs, $a \rightarrow a_{i} \rightarrow a(k)$
- And the states

$$
|n\rangle \rightarrow\left|n_{i}\right\rangle \rightarrow|n(k)\rangle
$$

- And the energy

$$
(n+1 / 2) \hbar \omega \rightarrow \sum\left(n_{i}+1 / 2\right) \hbar \omega_{i} \rightarrow \int[n(k)+1 / 2] \hbar \omega(k) d k
$$

- Just like in mechanics, we expand around the minimum of the fields, and to leading order we have SHOs
- In QFT fields are operators while x and t are not

SHO and photons

I have two questions:

- What is the energy that it takes to excite an harmonic oscillator by one level?
- What is the energy of the photon?

SHO and photons

I have two questions:

- What is the energy that it takes to excite an harmonic oscillator by one level?
- What is the energy of the photon?

Same answer

$$
\hbar \omega
$$

- Why is the answer to both question the same? Can we learn anything from it?

What is a particle?

Excitations of SHOs are particles

More on QFT

What about masses?

- A "free" Lagrangian gives massless particle

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2} \Rightarrow \omega=k \quad(\text { or } E=P)
$$

- We can add "potential" terms (without derivatives)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

- Here m is the mass of the particle. Still free particle
- (HW) Show that m is a mass of the particle by showing that $\omega^{2}=k^{2}+m^{2}$. To do it, use the E-L Eq. and "guess" a solution of the form $\phi=e^{i(k x-\omega t)}$.

What about other terms?

- How do we choose what terms to add to \mathcal{L} ?
- Must be invariant under the symmetries
- We keep some leading terms (usually, up to ϕ^{4})
- Lets add $\lambda \phi^{4}$

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{4} \lambda \phi^{4}
$$

- We get the non-linear wave equation

$$
\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial t^{2}}=m^{2} \phi+\lambda \phi^{3}
$$

- We do not know how to solve it

What about fermions?

- We saw how massless and massive bosons are related to SHO
- The spin of the particle is related to the polarization of the classical field
- Scalar field: spin zero particles
- vector field: spin one particles
- Can we construct a fermionic harmonic oscillator?

$$
\left[a, a^{\dagger}\right]=1 \quad \rightarrow \quad\left\{b, b^{\dagger}\right\}=1
$$

- No classical analog since $b^{2}=0$
- We can then think of fermionic fields. They can generate only one particle in a given state

A short summary

- Particles are excitations of fields
- The fundamental Lagrangian is giving in terms of fields
- Our aim is to find \mathcal{L}
- We can only solve the linear case, that is, the equivalent of the SHO
- What can we do with higher order terms?

Perturbation theory

Perturbation theory

$$
H=H_{0}+H_{1} \quad H_{1} \ll H_{0}
$$

- In many cases, perturbation theory is a mathematical tool
- There are cases, however, that PT is a better way to describe the physics
- Many times we prefer to work with EV of H (why?)
- Yet, at times it is better to work with EV of H_{0} (why?)

1 st and 2 nd order PT

$$
H=H_{0}+H_{1} \quad H_{1} \ll H_{0}
$$

- In first order we care only about the states with the same energy

$$
\langle f| H_{1}|i\rangle \quad E_{f}=E_{i}
$$

- 2nd order pertubation theory probe the whole spectrum

$$
\sum_{n} \frac{\langle f| H_{1}|n\rangle\langle n| H_{1}|i\rangle}{E_{n}-E_{f}} \quad E_{f}=E_{i} \quad E_{n} \neq E_{i}
$$

PT for 2 SHOs

$$
V(x, y)=\frac{k x^{2}}{2}+\frac{4 k y^{2}}{2}+\alpha x^{2} y
$$

- We assume that α is small
- Classically α moves energy between the two modes
- How it goes in QM?
- Recall the Fermi golden rule

$$
P \propto|\mathcal{A}|^{2} \times \text { P.S. } \quad \mathcal{A} \sim\langle f| \alpha x^{2} y|i\rangle
$$

- The relevant thing to calculate is the transition amplitude, \mathcal{A}.

