

### Nuclear binding energies and astrophysics motivation in the <sup>78</sup>Ni region

Anu Kankainen

Email: anu.kankainen@jyu.fi

## **Astrophysical processes**







## **Neutron star crust composition**





R.N.Wolf et al., PRL 110, 041101 (2013)

Nuclei close to N=50 dominant in the outer crust at depth ~60-250 m.

Including new masses → effect on the composition

## **Astrophysical r process**



#### Weak r process (A < 120)

- v-driven winds from proto-neutron star in core-collapse supernovae
- MHD supernovae jets

#### Main r process (A > 120)

- Merger of two neutron stars -- confirmed by GW170817, GRB 170817A&AT2017gfo; see e.g. Astrophys. J. Lett. 848, L12 (2017)
- neutron star black hole mergers?
- Other sites, such as magnetars?

## **Astrophysical r process**



#### Weak r process (A < 120)

- v-driven winds from proto-neutron star in core-collapse supernovae
- MHD supernovae jets Also in neutron star

mergers!

N.V. Tanvir et al., Astrophys. J. Lett. 848, L27 (2017)

#### Main r process (A > 120)

- Merger of two neutron stars -- confirmed by GW170817, GRB 170817A&AT2017gfo; see e.g. Astrophys. J. Lett. 848, L12 (2017)
- neutron star black hole mergers?
- Other sites, such as magnetars?

## Kilonova associated with GW170817

# <u>()</u>

#### D. Kasen et al., Nature 551 (2017) 80



- Kilonova = thermal glow powered by radioactive decay of r-process nuclei
- Change from blue to red kilonova
- Two components:
  - A<140 (blue, lower opacity)
  - A>140 (red, higher opacity)

### **Production of lighter r-process** elements



#### D. Kasen et al., Nature 551 (2017) 80



Wind ejecta can produce isotopes in the range between the 1<sup>st</sup> and 2<sup>nd</sup> r-process peaks, or even near the iron peak for particularly high Y<sub>e</sub> values *Lippuner et al., MNRAS* 472 (2017) 904–918

# Nuclear physics inputs for the r process

#### Need:

- Nuclear masses
- Beta-decay T<sub>1/2</sub> and P<sub>n</sub> values
- (n,γ) rates
- Fission properties for recycling





## **Neutron shell gap N=50**





Penning trap measurements in the region, e.g.

#### JYFLTRAP:

- S. Rahaman et al., EPJ A 34, 5 (2007)
- J. Hakala et al., PRL 101, 052502 (2008)
- L. Canete, S. Giraud et al.

#### **ISOLTRAP:**

- C. Guénaut et al., PRC 75, 044303 (2007)
- S. Baruah et al., PRL 101, 262501 (2008)
- A. Welker et al., PRL 119, 192502 (2017)

# Measurements with ISOLTRAP at ISOLDE



<sup>79</sup>Cu measured but <sup>81</sup>Cu unmeasured – N=50 shell gap at Z=29 extrapolated but:



New shell-model interaction PFSDG-U fits well with the measured masses *F. Nowacki et al., PRL 117, 272501(2016)* 

# Measurements with JYFLTRAP at IGISOL



35 MeV p on <sup>nat</sup>U Measured several new isotopes close to N=40 and N=50

L.C. Canete, S. Giraud, A. Kankainen, B. Bastin et al., in preparation

| <sup>72</sup> As | <sup>73</sup> As | <sup>74</sup> As | <sup>75</sup> As | <sup>76</sup> As | <sup>77</sup> As | <sup>78</sup> As | <sup>79</sup> As                 | <sup>80</sup> As                 | <sup>81</sup> As                 | <sup>82</sup> As                 | <sup>83</sup> As | <sup>84</sup> As  | <sup>85</sup> As                 | <sup>86</sup> As                 | <sup>87</sup> As                 | <sup>88</sup> As |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------|-------------------|----------------------------------|----------------------------------|----------------------------------|------------------|
| <sup>71</sup> Ge | <sup>72</sup> Ge | <sup>73</sup> Ge | ™Ge              | <sup>75</sup> Ge | <sup>76</sup> Ge | <sup>77</sup> Ge | <sup>78</sup> Ge                 | <sup>79</sup> Ge                 | <sup>80</sup> Ge                 | <sup>81</sup> Ge                 | <sup>82</sup> Ge | <sup>83</sup> Ge  | <sup>84</sup> Ge                 | <sup>85</sup> Ge                 | <sup>86</sup> Ge                 | <sup>87</sup> Ge |
| <sup>70</sup> Ga | <sup>71</sup> Ga | 72Ga             | <sup>73</sup> Ga | <sup>74</sup> Ga | <sup>75</sup> Ga | <sup>76</sup> Ga | <sup>77</sup> Ga                 | <sup>78</sup> Ga                 | <sup>79</sup> Ga                 | <sup>80</sup> Ga                 | <sup>81</sup> Ga | <sup>82</sup> Ga  | <sup>83</sup> Ga                 | <sup>84</sup> Ga                 | <sup>85</sup> Ga                 | <sup>86</sup> Ga |
| <sup>69</sup> Zn | <sup>70</sup> Zn | <sup>71</sup> Zn | <sup>72</sup> Zn | <sup>73</sup> Zn | <sup>74</sup> Zn | <sup>75</sup> Zn | <sup>76</sup> Zn                 | <sup>77</sup> Zn                 | <sup>78</sup> Zn                 | +m                               | <sup>80</sup> Zn | <sup>81</sup> Zn  | <sup>82</sup> Zn                 | <sup>83</sup> Zn                 | <sup>#</sup><br><sup>84</sup> Zn | <sup>85</sup> Zn |
| <sup>68</sup> Cu | <sup>69</sup> Cu | <sup>70</sup> Cu | <sup>71</sup> Cu | <sup>72</sup> Cu | <sup>73</sup> Cu | <sup>74</sup> Cu | <sup>75</sup> Cu                 | +m<br><sup>76</sup> Cu           | <sup>77</sup> Cu                 | <sup>78</sup> Cu                 | <sup>79</sup> Cu | <sup>#</sup> 80Cu | <sup>#</sup><br><sup>81</sup> Cu | <sup>#</sup><br><sup>82</sup> Cu | Coppe<br>Z=29                    | er               |
| <sup>67</sup> Ni | <sup>68</sup> Ni | <sup>69</sup> Ni | <sup>70</sup> Ni | <sup>71</sup> Ni | <sup>72</sup> Ni | <sup>73</sup> Ni | <sup>74</sup> Ni                 | <sup>75</sup> Ni                 | <sup>76</sup> Ni                 | <sup>77</sup> Ni                 | <sup>78</sup> Ni | <sup>79</sup> Ni  | Nickel<br>Z=28                   |                                  |                                  |                  |
| <sup>66</sup> Co | <sup>67</sup> Co | <sup>68</sup> Co | <sup>69</sup> Co | 70 <b>C</b> O    | <sup>71</sup> Co | <sup>72</sup> Co | <sup>73</sup> Co                 | <sup>74</sup> Co                 | <sup>75</sup> Co                 | <sup>#</sup><br><sup>76</sup> Co | Cobalt<br>Z=27   | 🗸 Done            |                                  |                                  |                                  |                  |
| <sup>65</sup> Fe | <sup>66</sup> Fe | <sup>67</sup> Fe | <sup>68</sup> Fe | <sup>69</sup> Fe | <sup>70</sup> Fe | <sup>71</sup> Fe | <sup>#</sup><br><sup>72</sup> Fe | <sup>#</sup><br><sup>73</sup> Fe | <sup>#</sup><br><sup>74</sup> Fe | lron<br>Z=26                     |                  | •                 |                                  |                                  |                                  |                  |
|                  |                  |                  |                  |                  |                  |                  |                                  |                                  |                                  |                                  |                  |                   |                                  |                                  |                                  |                  |
|                  |                  |                  | _                |                  |                  | N=50             |                                  |                                  |                                  |                                  |                  |                   |                                  |                                  |                                  |                  |

### **Isomeric states revealed with PI-ICR**





Nubase 
$$J^{\pi} = (1,3)$$
  $T_{1/2} = 1.27(30)$  s  
 $E^* = 0\#(200\#)$  keV ?  
 $J^{\pi} = (3,4)$   $T_{1/2} = 637.7(55)$  ms  
ME = -50976(7) keV  
 $7^6$ Cu

#### JYFLTRAP: TOF-ICR, T<sub>RF</sub> = 1120 ms



JYFLTRAP:  $T_{1/2}(g.s.) > T_{1/2}(m1)$ 

**Two half-lives (TRISTAN):** J. A. Winger et al, PRC 42, 954 (1990).

Mass of <sup>76</sup>Cu (ISOLTRAP): C. Guenaut et al., PRC 75, 044303 (2007); A. Welker et al., PRL 119, 192502 (2017).

# Shape coexistence: <sup>79</sup>Zn<sup>m</sup> (1/2+)



#### Collinear laser spectroscopy at ISOLDE



X. F. Yang et al. PRL 116, 182502 (2016)

## Systematics of N=49 isotones



X. F. Yang et al. PRL 116, 182502 (2016)

## Shape coexistence: masses



#### Mass measurements at JYFLTRAP $\rightarrow$ excitation energy for the isomer



L.Canete, S. Giraud, AK, B. Bastin et al., in preparation

## **Outlook: sensitivity studies**



calculated neutron-capture rates.

## **Summary and outlook**



- Toward more neutron-rich exotic nuclei close to <sup>78</sup>Ni
- Mass measurements using Penning trap techniques and MR-TOF mass spectrometers at ISOLDE, IGISOL, ALTO,...
- Long-living isomeric states and their role
- Purified beams for decay spectroscopy (beta-delayed gammas and neutrons, half-lives, ...)
- Neutron-capture rates: (d,p), beta-Oslo method,...
- Interesting region for EURISOL-DF!

## **Acknowledgments**





UNIVERSITY OF JYVÄSKYLÄ



ACADEMY OF FINLAND

**European Research Council** 

Established by the European Commission

ERC CoG MAIDEN





SOCIETAS SCIENTIARUM FENNICA - FINSKA VETENSKAPS-SOCIETETEN Suomen Tiedeseura The Finnish Society of Sciences and Letters

This work has been supported by the Academy of Finland under grants No. 275389 and 284516 as well as under the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL).