

Silicon-technology for charged particle detection : new developments and perspectives

M. Assié, IPN Orsay

Eurisol Topical Meeting Pisa

Direct reactions

A great tool to investigate Exotic Nuclei and astrophysics processes

Direct reactions

A great tool to investigate Exotic Nuclei and astrophysics processes

Eurisol Topical Meeting Pisa

Direct reactions

A great tool to investigate Exotic Nuclei and astrophysics processes

Good energy regime : few MeV/u \rightarrow few tenths of MeV/u

Silicon-based detectors : two strategies

Difficulties with current detectors (T-REX, MUST2, Tiara...):

- particle identification at low energy (like t/³He, ⁶Li/⁶He) based on ToF
- excitation energy resolution (dominated by target effects)
- coupling with gamma arrays

Silicon-based detectors : two strategies

Difficulties with current detectors (T-REX, MUST2, Tiara...):

- particle identification at low energy (like t/³He, ⁶Li/⁶He) based on ToF
- excitation energy resolution (dominated by target effects)
- coupling with gamma arrays

- avoid kinematics compression
 to improve energy resolution
- Coupling with gamma : difficult
- solid/gas targets

- Identification by PSA technique
- high granularity -->nb channels
- coupled state-of-the-art gamma array
- any type of target (cryogenic,...)
- nTD type DSSSD

GRIT : Granularity Resolution Identification Transparency

 4π Si array fully integrable in PARIS/AGATA/EXOGAM2/Miniball

Collaboration : INFN Padova - IPN Orsay – Surrey – LPC Caen – BARC Mumbai

Direct reactions measurement and particle- γ coincidence

- . Energy resolution (gamma) and good efficiency
- . Good granularity (pitch <1mm)
- . radius = 23cm (defined by gamma array)
- . **PSD** to identify low energy particles (1st layer)
- . Integrated electronics (iPACI, PLAS) designed by IPN & INFN
- . Integration of special targets (cryogenic ,Chymène...)
- . Versatile & transportable detector

Layers of Silicon

- 500 um DSSD pitch < 1mm</p>
- 1(or 2) x [1.5 mm DSSD pitch~1mm]
- 2 main shapes : square & trapezoid, large area

Physics cases

13 Lol for Spiral2

- . Shell evolution
- . Pairing
- . Clusters
- . Near Barrier reactions
- . Astrophysics

+ 1 Lol ISOLDE

Eurisol Topical Meeting Pisa

Silicon detectors for GRIT

New geometries - **New packaging** (thin frames, kaptons 90 deg.) **New technology : nTD, 4 deg. cut, reverse mounted Thin and thick DSSD 6 inch**

Trapezoidal DSSSD

Received from Micron Semiconductors:

2nd prototype (re-designed) IPN

• **4 pre-series** IPN –Surrey-Santiago received feb. 2017 and validated (alpha source).

Squared DSSSD Received from Micron Semiconductors: - 2 prototypes 500um INFN - 1 prototype 1.5mm INFN received feb. 2017 validated with alpha source

Test bench @ IPNO :

- analog (MUFEE) : 128X+128Y

- numerical (iPACI): 9X+9Y

In-beam test @ ALTO end 2017 PSD for the trapezoid detectors

03/07/2018

Eurisol Topical Meeting Pisa

Pulse Shape Analysis for Z=1 particles : Current amplitude

➡ Measurement of ⁷Li+¹²C at ALTO

Experimental set-up :

- Square nTD DSSSD (BB13) 500um, pitch=475um
- PACI (discrete) preamplifier (I&Q)
- MATACQ digitizers (1GHz, 2048 samples)

M. A., B. Lecrom et al EPJA (2015)

Pulse Shape Analysis for Z=1 particles : Other observables

➡ Need for I,Q,T for each channel

M. A., B. Lecrom et

al EPJA (2015)

/ B. Genolini et al, NIMA 2014

PSA for Z=2 particles : Several observables

Experiment @ ALTO to study Z=2 particles : (d,³He) on mylar

PSA for Z=2 particles : digital Time of flight

PSA with trapezoid detectors from GRIT

Strip length (mm)

Electronics specifications : Sampling rate

- Effect of bias : best compromise is 300V (depletion)
- Other observables and Filters (Haar wavelets) : Imax or Haar+ ToT
- Effect of sampling frequency : loss of discrimination below 250MHz

→ The sampling rate should be higher than 200MHz

Radiation damage with light particles

Experiment @ ALTO to study radiation damage with light particles

Maximum of charge signal decreases and resolution worsen

Set-up :

- 4 MeV proton beam+ Au
- 1cm² nTD pad Silicon detector
- same wafer as trapez.

GRIT electronics

Clock distribution

and free, doubling

BACK END

_100 MHz

readout clock 50 MHz

ADC

GTS leaf

readout

FPGA

timestamr

trigger

FRONT END

ampling clock 200 MHz

output

signals

analog

memory

ASIC

preamp ASIC

signals from

detector

input signals

Preamplifiers

iPACI (IPNO): integrated version of PACI

- <u>version 1</u> : june 2015 fully tested with prototype E Range : 50 MeV Current : +/- 1.5 V Noise : 7 keV (FWHM)

- <u>version 2</u> (fast & slow shaper, TAC) automn 2018

ToT Milano (INFN)

-<u>version 1</u> : 2015, fully tested, never tested with high energy particles.

PLAS (R. Aliaga, Valencia)

ASIC analog memory based on switched capacitors

- version 1 received sept. 2016
- version 2: submitted may 2018

FASTER v3 (D. Etasse, LPC Caen)

--> adaptation for our needs

R. Aliaga, NIMA 800 (2015) 34

Tests 2019 : coupling iPACI or ToT +PLAS+ FASTER

03/07/2018

Pld : ToF

Eurisol Topical Meeting Pisa

Timelines & facilities for GRIT

17

MUGAST : a first step towards GRIT

20

50

100

 Θ (deg)

150

Campaign beginning of 2019

New Spiral 1 beams (low energy)

AGATA

- . very high energy resolution
- . good efficiency : 13% at1.3MeV in 2019 @ 18cm

(depending on number of clusters)

► MUGAST

. one-layer of Silicon backward & 90 deg.

 \rightarrow well-suited for stripping measurements

- . specific target (cryogenic)
- ► VAMOS : large acceptance spectrometer at 0 degree

Physics cases :

Accepted : Nuclear astrophysics : 15O(⁶Li,d) Unbound states : 14O(p,p^(')) resonant elastic scatt.

Submitted : Shell evolution, island of inversion, shape coexistence, pairing

03/07/2018

Eurisol Topical Meeting Pisa

GRIT Demonstrator with EXOGAM (Conceptual design)

Chamber radius: 150mm

D _{target} = 85mm

- Conceptual design based on the use of 2x4 Trapezoids (2 layers : 0.5+1.5mm)
- FEE to be deported upstream and downstream the chamber

Design: E.Rindel, IPNO & LPC Caen

GRIT Demonstrator with Miniball @ ISOLDE

• Lol for GRIT @ ISOLDE (W. Catford)

Complementary reactions to be measured :

- Lol to measure ⁴⁴Ti(⁶Li,d) and (⁶Li, alpha) to study pairing and quartetting in nuclei
- Beams of interest Cr, Ge, Zn... complementary to Spiral1 new beams

+ Miniball

Particle Identification :
 Beam time structure -->
 only PSA technique ! -->

no ToF can be used new GRIT electronics

Conclusions / Summary

- GRIT : development phase
 - detectors prototypes + pre-series OK
 - design of numerical electronics : iPACI + PLAS + FASTER
 - mechanics to be adapted as function of electronics consumption

--> First experiment with demonstrator foreseen end 2021 at ISOLDE

- MUGAST : running soon !
 - detectors prototypes + pre-series of GRIT
 - MUST2 electronics
 - AGATA-MUGAST-VAMOS campaign in april 2019
 - possibility to run with EXOGAM on LISE
 - moveable detector (experience with MUST2)