

ACTAR TPC

Active Target and Time Projection Chamber

 \checkmark Gas-filled active target and time projection chamber

- Gas = detector AND target
- Vertexing = resolution similar to thin solid target
- High effective thickness = up to 10^3 higher

 \checkmark Major advantages over conventional approaches

- Detection efficiency close to 4π
- Detection of low energy recoils (that stop inside the target)
- Event-by-event 3D reconstruction
- Compact, portable and versatile detector

✓ Physics programs

- Resonant scattering
- Inelastic scattering and giant resonances
- Transfer reactions
- Rare and exotic decays (2p, β 2p, ...)
- Transfer-induced fission, ...

European Research Council

Established by the European Commission

✓ Drift region

- ✓ Amplification region
- ✓ Segmented pad plane
- ✓ Electronics
- ✓ Auxiliary detectors

✓ Drift region: principle

- Particles ionize the gas along their trajectories
- Ionization electrons drift to pad plane under a homogeneous electric field
- Transparent to particles on 4 sides
 - \rightarrow Wire field cage
- Homogeneous vertical drift electric field
 - \rightarrow Double wire field cage: 2 mm pitch (outside), 1 mm pitch (inside)
 - \rightarrow Optical transparency = 98 %

Lavout of the cel

Ar 90%, T=300 K, p=1 at

ACTAR TPC : Design

✓ Drift region

- ✓ Amplification region: principle
 - Micro Pattern Gaseous Detectors: micromegas, possible upgrade to GEMs
 - Operate at P = 75 mbar 1 bar: gap = 220 μm
 - Local gain reduction via pad polarization

✓ Drift region

- ✓ Amplification region: principle
- ✓ Segmented pad plane
 - Micromegas \rightarrow transverse multiplicity given by the electron straggling: 2x2 mm² pads
 - 16384 pads with very high density: connectics challenge!

Multi-layer PCB routing solution : P. Gangnant/M. Blaizot-GANIL JST Connectors, 0.5 mm pitch

FAKIR solution : J. Pibernat-CENBG

- ✓ Drift region
- ✓ Amplification region: principle
- ✓ Segmented pad plane
- ✓ Electronics
 - Very front end sparking protection circuit: ZAP boards
 - Pads equipped with GET electronics:
 - \rightarrow 512 samples ADC readout depth x 16384 pads = volume sampling in 8 Mega voxels
 - \rightarrow adjustable gain, peaking time, individual trigger: pad per pad

E.C. Pollacco et al., NIM A887, 81 (2018)

- ✓ Drift region
- ✓ Amplification region: principle
- ✓ Segmented pad plane
- Electronics
- ✓ Auxiliary detectors
 - Already equipped with Si/CsI telescopes on 1 side
 - Configurable flange design: can be adapted to many other detectors

 \checkmark First commissioning with a 32x64 pads Demonstrator

- ${}^{6}\text{Li}(\alpha, \alpha)$ and ${}^{12}\text{C}(p, p')$ at Tandem Orsay \rightarrow angular distributions validated
- ⁵⁸Ni(p,p) at GANIL

 \rightarrow 200 keV protons tracking, excitation energy resolution = 175 keV FWHM

B. Mauss, PhD thesis (GANIL)

 \checkmark First commissioning with a 32x64 pads Demonstrator

 \checkmark First commissioning with a 32x64 pads Demonstrator

✓ Commissioning of the 128x128 pad full detector • $^{18}O(n n)$ and $^{18}O(n n)$ avaitation functions

• ¹⁸O(p,p) and ¹⁸O(p, α) excitation functions

 \checkmark First commissioning with a 32x64 pads Demonstrator

Commissioning of the 128x128 pad full detector 180(n n) and 180(n n) are itation.

• ¹⁸O(p,p) and ¹⁸O(p, α) excitation functions

 \checkmark First commissioning with a 32x64 pads Demonstrator

Commissioning of the 128x128 pad full detector
 ¹⁸O(p,p) and ¹⁸O(p,α) excitation functions

Results at $\theta_{cm} = (160 \pm 5)^{\circ}$ for the ¹⁸O experiment:

Extraction of the absolute cross section

R-matrix calculation performed with the AZURE2 code.

Previous experimental data: R. R. Carlson, C. C. Kim, J. A. Jacobs and A. C. L. Barnard in Physical Review 122, 607-616 (1961)

article on the commissioning in preparation

 \rightarrow theoretical curves convoluted with a gaussian function of resolution (47 ± 42) keV FWHM for the (*p*,*p*) channel, and (61 ± 54) keV FWHM for the (*p*,*a*) channel at $\theta_{cm} = 160^{\circ}$

ACTAR TPC : Opportunities with EURISOL-DF

✓ GANIL - SPIRAL1

- 2 experiments accepted: resonant scattering

 → ¹⁷F(p,2p) and (p,α): G.F. Grinyer, T. Roger
 → ³²Ar(p,p): B. Fernandez-Dominguez
- 1 new proposal for the next GANIL PAC
- Plans to extend to transfer reactions

ACTAR TPC : Opportunities with EURISOL-DF

✓ GANIL - SPIRAL1

✓LNL - SPES

- → ACTAR TPC Demonstrator was sent to Legnaro (Coordinator: T. Marchi)
 - 1st part: energy loss measurement
 - 2nd part: transfer reaction on post-accelerated fission fragments

Table 1. List of the proposed projectile for the energy loss profile measurements. As an example, the pressure needed

lon	Beam Energy	Gases to be measured	BTU	iC4H10 pressure (mbar)	
	(MeV/u)		requested	typical case example	
⁷ Li	1.0 - 4.5	H2, D2, CH4, iC4H10, CF4, CO2, He	4.5	500	
⁹ Be	1.5 - 4.5		4.5	500	
¹⁰ B	1.8 - 4.5		4.5	500	
12C	2.0 - 4.5		4.5	250	
¹⁵ N	2.0 - 4.5		4.5	250	
¹⁶ O	2.0 - 4.5		4.5	250	
¹⁹ F	2.0 - 4.5		4.5	250	
²⁴ Mg	2.0 - 4.5		4.5	250	
⁴⁰ Ca	2.0 - 3.8		4.5		
120Sn	1.5 - 1.7		4.5	- 300 + (H-base) J.F.Ziegler (al, Pergamon Pi
Total 45				* SRIM : 24Mg range in D × ActarSim : 24Mg range	02_STP (0.167m in D2_STP (0.1
				0	

to stop the gas on the pad plane is given for the iC4H10 case.

Laboratoire commun CEA/DBF

ACTAR TPC : Opportunities with EURISOL-DF

✓ GANIL - SPIRAL1

- ✓LNL SPES
- ✓ HIE-ISOLDE
 - Beam time structure is not an advantage for an active target, unless a beam mask is used (high instantaneous energy deposit will saturate the preamps)
 - However, it is a good advantage for a TPC!

Collaboration

GANIL	GANIL	CENBG	
M. Blaizot	V. Vandevoorde	B. Blank	
P. Bourgault	G. Wittwer	J. Giovinazzo	
B. Duclos	F. Saillant	T. Goigoux	
G. Fremont	SACLAY	J.L Pedroza	
P. Gangnant	E.C. Pollacco	J. Pibernat	
J. Goupil	P. Sizun	USC	
C E Grinvar ¹	M. Vandebrouck	H. Alvarez-Pol	
G.F. Gilliyer	K.U. Leuven	M. Camaano	
A.T. Laffoley ²	S. Ceruti	B. Fernández	
L. Legeard	O. Poleshchuk	IPNO	
C. Maugeais	R. Raabe	M. Babo	
B. Mauss	R. Renzi	F. Flavigny	
M. Michel	J.A. Swartz	RIKEN	
P. Morfouace	J.C. Yang	D. Suzuki	
J. Pancin	LNL		
T. Roger	T. Marchi		

C. Spitaels

Current affiliation: ¹University of Regina, Canada ²University of Guelph, Canada

The research leading to these results have received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement n° 335593.