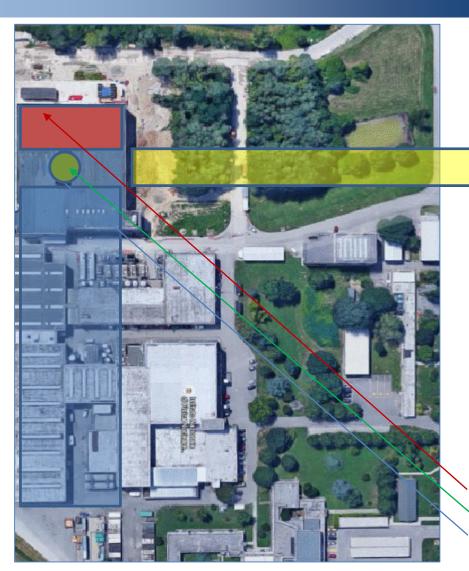


Stefano Corradetti Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Legnaro


On behalf of the SPES target, ISOLPHARM and ISOLPHARM_Ag groups

Eurisol Town Meeting – Pisa, 2nd July 2018

Project financied by INFN

New infrastructure for:

- Application Facility
- Cyclotron
- RIB facility (2th generation ISOL)

ISOLPHARM:

Between the β and γ phase of the SPES project

α

Cyclotron installation & commissioning:

E=70 MeV proton beam, $I=750 \mu A$

δ

Accelerator based neutron source (Proton and Neutron Facility for Applied Physics)

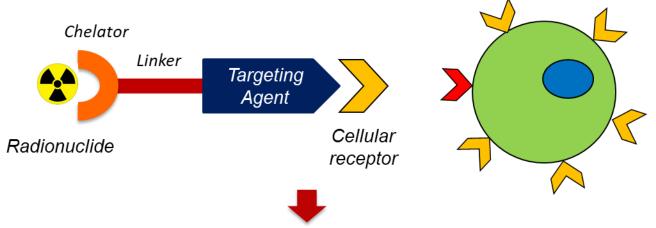
β

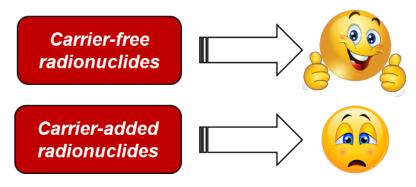
Production and reacceleration of exotic beams, from p-induced Fission on UC_x

γ

SPES for medicine

Production of radionuclides for nuclear medicine,


The main objective of the ISOLPHARM project is the production of carrierfree radionuclides for radiolabeling of bioactive molecules



Radiopharmaceuticals and Targeted Radionuclide Therapy

Depending on the production method:

1 Cyclotrons

(3 Generators)

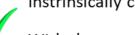
2 Nuclear reactors

Radionuclides can be produced in big amounts

High specific activity radionuclides can be produced in some cases if enriched targets are used, which are often very expensive

A difficult and precise beam energy tuning is required in order to preserve radionuclide purity.

Radionuclides for therapy can be produced in big amounts


Parent nuclides for generators can be produced

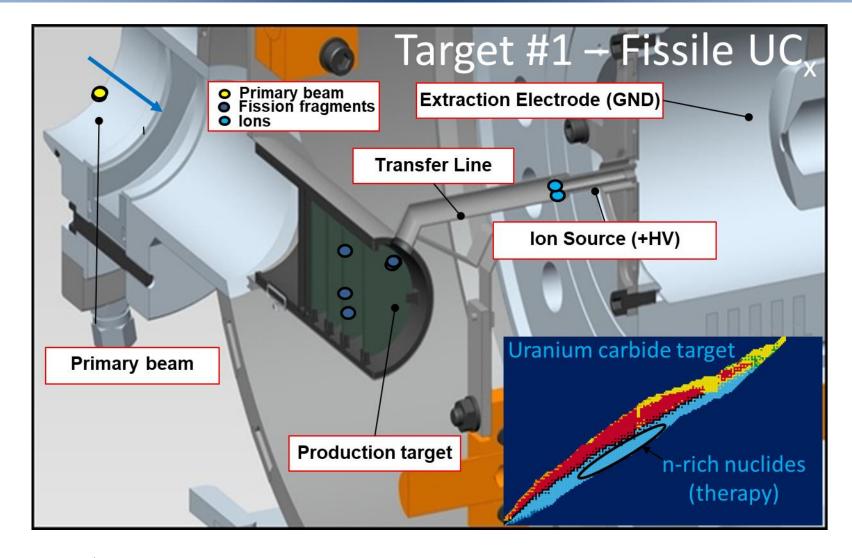
Radionuclides produced by direct reactions are often carrier added

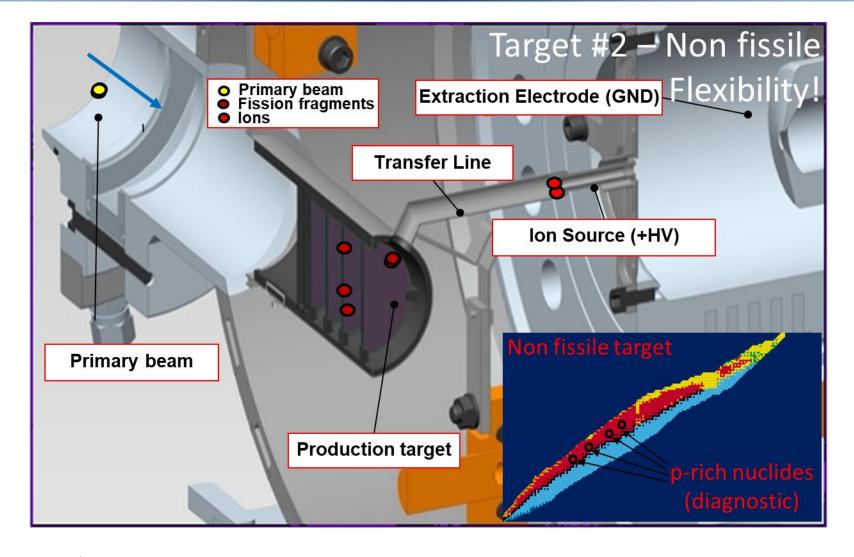
ISOLPHARM

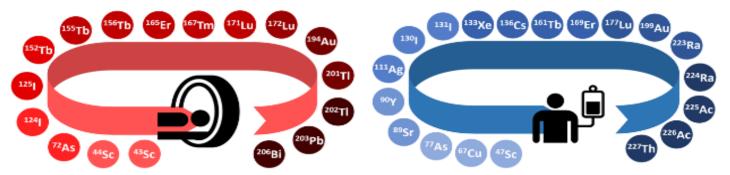
Instrinsically carrier-free radionuclides can be produced

Designing specific targets a wide range of radionuclides can be produced, including radionuclides which can be hardly produced with the traditional techniques

Production yields are lower than those of cyclotrons and nuclear reactors

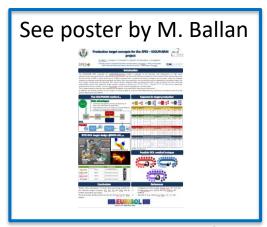






ISOLPHARM:

Radionucludes that can be produced at LNL



Therapeutic isotopes

Theragnostic isotopes

UC_x target Production of ¹¹¹Ag

		,		SPES L	JC _x isoto	pe prod	uction (20	00 μΑ 40	MeV PI	PB, 5 irra	diation	days)
Isotop	e Half-life				Decay ra	adiations				Produced	dactivity	Notes
	t _{1/2}		β-	β+	/ €		γ	Au	ger	[MBq]	[mCi]	
⁷⁷ As	38,83 h	100%	0,683 MeV	/	/	1,59%	239 keV	0,06%	(9,67 keV)	2,21E+03	59,73	
⁸⁶ Rb	18,642 d	99,99%	1,776 MeV	0,01%	€	8,64%	1077 keV	0,01%	(10,8 keV)	6,06E+01	1,64	
⁸⁹ Sr	50,53 d	100%	1,5 MeV	/	/	/	/	/	/	8,85E+03	239,15	
⁹⁰ Sr	28,9 y	NR	NR	NR	NR	NR	NR	NR	NR	5,16E+01 1,39		⁹⁰ Y generator
⁹⁰ Y	64,053 h	100%	2,28 MeV	/	/	/	/	0,00%	(13,4 keV)	1,88E+02	5,08	
¹¹¹ Ag	7,45 d	100%	1,036 MeV	/	/	6,70%	342 keV	0,04%	(19,3 keV)	8,29E+04	2241,85	
¹²² Sb	2,7238 d	97,59%	1,984 MeV	2,41%	β+	70,67%	564 keV	0,29%	(21 keV)	1,32E+03	35,80	
¹²⁵	59,407 d	/	/	100%	€	6,68%	35,49 keV	19,80%	22,7 keV	1,70E+00	0,05	
¹²⁶	12,93 d	47,30%	1,258 MeV	52,70%	β+	32,90%	666,33 keV	5,53%	22,7 keV	3,65E+01	0,99	
¹³⁰ I	12,36 h	100%	2,949 MeV	/	/	11,30%	1157 keV	0,19%	(24,6 keV)	2,82E+04	760,84	
¹³¹	8,0252 d	100%	0,970 MeV	/	/	81,50%	364 keV	0,68%	(24,6 keV)	6,57E+04	1774,77	
¹³³ Xe	5,2475 d	100%	0,427 MeV	/	/	36,90%	80,99 keV	5,67%	25,5 keV	8,59E+04	2320,76	
¹²⁹ Cs	32,06 h	/	/	100,00%	β+	30,60%	371,92 keV	13,10%	24,6 keV	4,62E+00	0,12	Many Auger e ⁻ emissions
131 Cs	9,689 d	/	/	100,00%	€	/	/	9,30%	24,6 keV	3,68E+01	0,99	Many Auger e ⁻ emissions
132 Cs	6,480 d	2%	1,279 MeV	98,13%	β+	1,58%	464 keV	9,40%	24,6 keV	2,14E+02	5,79	Many Auger e ⁻ emissions
136 Cs	13,04 d	100%	2,548 MeV	/	/	80,00%	1048 keV	1,24%	26,4 keV	1,16E+04	313,75	
¹⁶¹ Tb	6,89 d	100%	0,593 MeV	/	/	10,20%	75 keV	1,46%	37,2 keV	1,73E+02	4,67	
¹⁶⁹ Er	9,392 d	100%	0,351 MeV	/	/	0,00%	109,77 keV	0,00%	(5,67 keV)	1,54E+00	0,04	

ZrGe target

Production of ⁶⁴Cu and ⁶⁷Cu

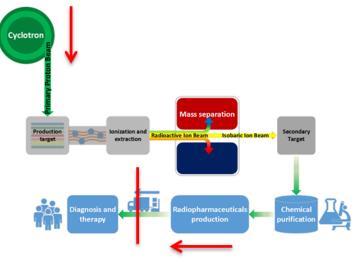
	⁶⁷ Cu production (t _{1/2} : 61,83 h)													
ZrGe	target (10	00 μΑ, 40	MeV)	ZrGe target (100 μA, 70 MeV)										
Time	Acti	vity	Nuclei	Time	Acti	Nuclei								
[days]	[MBq]	[mCi]	[#]	[days]	[MBq] [mCi]		[#]							
0,5	2,01E+01	0,54	6,47E+12	0,5	2,37E+02	6,40	7,61E+13							
1	3,77E+01	1,02	1,21E+13	1	4,44E+02	11,99	1,43E+14							
1,5	5,31E+01	1,43	1,71E+13	1,5	6,24E+02	16,87	2,01E+14							
2	6,65E+01	1,80	2,14E+13	2	7,82E+02	21,15	2,52E+14							
3	8,85E+01	2,39	2,85E+13	3	1,04E+03	28,14	3,35E+14							
4	1,05E+02	2,85	3,39E+13	4	1,24E+03	33,49	3,99E+14							
5	1,18E+02	3, 19	3,80E+13	5	1,39E+03	37,58	4,47E+14							
6	1,28E+02	3,46	4,12E+13	6	1,51E+03	40,70	4,84E+14							

⁶⁷Cu is hardly produced with traditional techniques, but has very good decay properties for therapy

	⁶⁴ Cu production (t _{1/2} : 12,7 h)													
ZrGe	target (10	00 μΑ, 40	MeV)	ZrGe target (100 μA, 70 MeV)										
Time	Activity Nuclei			Time	Acti	Nuclei								
[days]	[MBq]	[Ci]	[#]	[days]	[MBq] [Ci]		[#]							
0,5	2,97E+03	80,22	1,96E+14	0,5	2,66E+04	717,62	1,75E+15							
1	4,51E+03	121,90	2,97E+14	1	4,03E+04	1090,43	2,66E+15							
1,5	5,31E+03	143,55	3,50E+14	1,5	4,75E+04	1284,08	3,13E+15							
2	5,73E+03	154,79	3,78E+14	2	5,12E+04	1384,68	3,38E+15							
3	6,06E+03	163,67	3,99E+14	3	5,42E+04	1464,08	3,57E+15							
4	6,14E+03	166,06	4,05E+14	4	5,50E+04	1485,51	3,62E+15							
5	6,17E+03	166,71	4,07E+14	5	5,52E+04	1491,30	3,64E+15							
6	6,17E+03	166,88	4,07E+14	6	5,52E+04	1492,84	3,64E+15							

TiC target Production of ⁴³Sc, ⁴⁴Sc and ⁴⁷Sc

	TiC isotope production (100 μA 40 MeV PPB, 5 irradiation days)													
Isotope	Half-life		Decay radiations									Notes		
	t _{1/2}	$t_{1/2}$ β- β+/ε γ Auger		ger	[MBq]	[mCi]								
⁴⁷ Ca	4,563 d	NR	NR	NR	NR	NR	NR	NR	NR	6,67E+00	0,18	⁴⁷ Sc generator		
⁴³ Sc	3,891 h	/	/	100%	β+	22,50%	373 keV	8,93%	3,3 keV	3,23E+04	873,14			
⁴⁴ Sc	3,97 h	/	/	100%	β+	99,90%	1157 keV	4,14%	3,3 keV	2,39E+05	6445,95			
⁴⁷ Sc	3,3492 d	100%	0,6 MeV	/	/	68,30%	159 keV	0,22%	(4 keV)	8,14E+04	2199,08			


Very promising radionuclides, extremely challenging production!

Experimental activities: overview

Step 1

The cyclotron commissioning

Step 2

Production targets development

Step 3

Ion beams production

Step 4

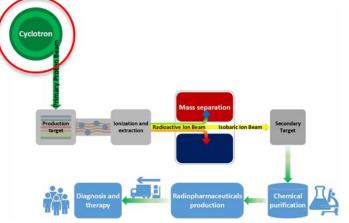
Secondary targets development and ions recovery

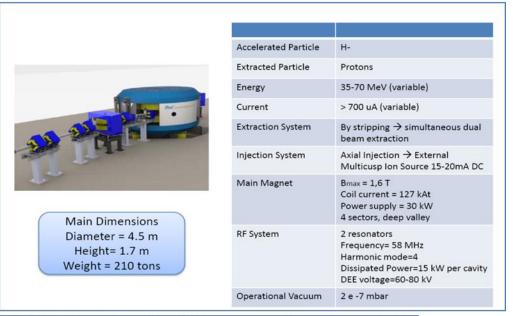
Step 5

Purification processes development

Step 6

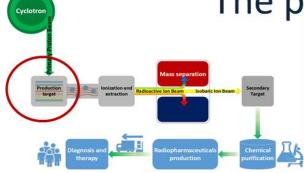
Radiolabeling studies





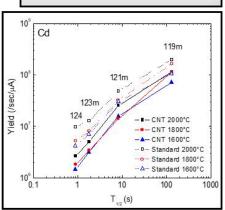
The proton driver

- 1 → reached 70 MeV few microA
- 2 → acceleration, extraction and delivery of beam in A6 with intermediate power (up to 15kW)
- 3 → High power (35 kW)
- 4 -> Endurance test (1 week continually)

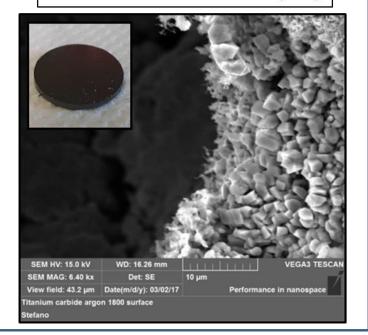


The production targets

UC_x target already developed and tested on-line!

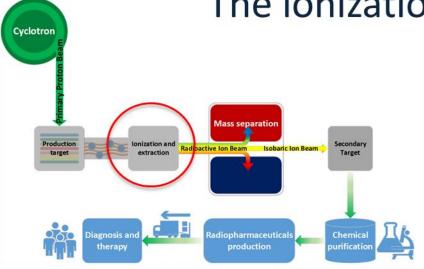

Other targets under development for specific radionuclides production:

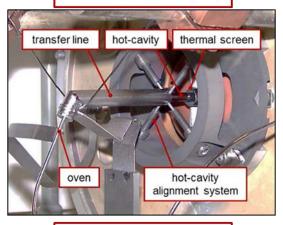
ZrGe: ⁶⁴Cu, ⁶⁷Cu TiC: ⁴³Sc, ⁴⁴Sc, ⁴⁷Sc


UC_x target prototype

	Standard (graphite)	Low density (MWCNTs)				
Density (g/cm³)	4.25	2.59				
Diameter (mm)	12.50	13.07				
Thickness (g/cm²)	0.41	0.41				
Calculated porosity (%)	58	75				

Porous titanium carbide (TiC)



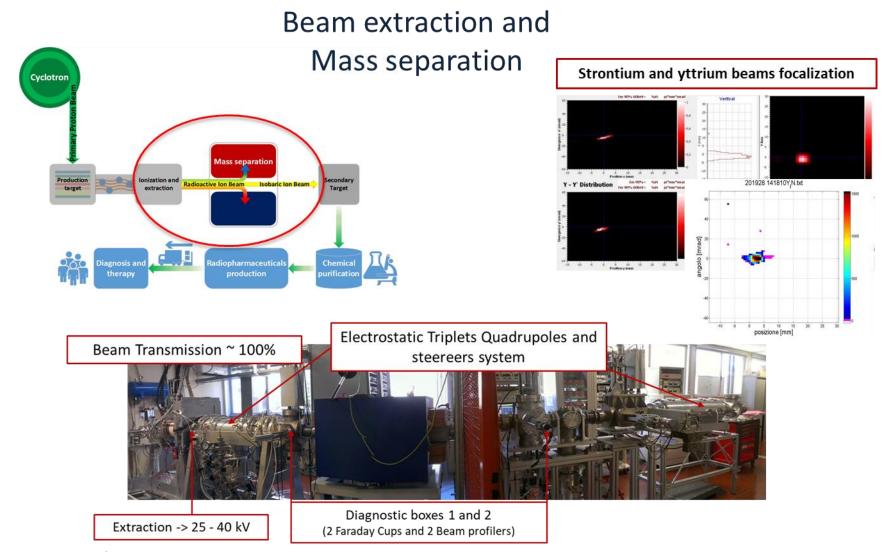


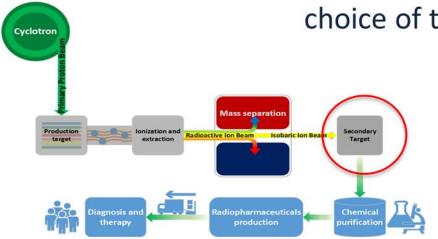
The ionization source

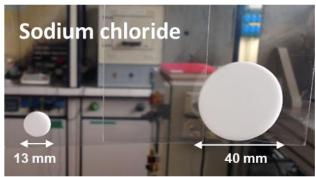


lonized element	Desired radionuclide	Ionization source	Efficiency
Sr	⁸⁹ Sr, ⁹⁰ Sr/ ⁹⁰ Y	SIS	~ 20 %
Y	90γ	PIS	\sim 1 %
ı	¹²⁵ l, ¹²⁶ l and ¹³¹ l	PIS	~ 20 %
Cu	⁶⁴ Cu, ⁶⁷ Cu	PIS	\sim 10 %
Ag	¹¹¹ Ag	PIS	~ 10 %

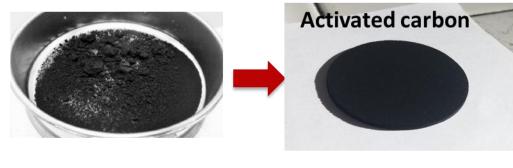
Surface Ion Source (SIS)


Plasma Ion Source (PIS)





Secondary targets production: choice of the material

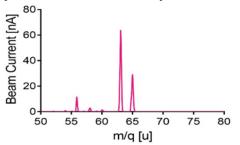

Secondary target requirements:

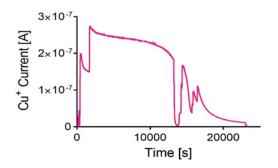
- 1. Chemical compatibility with the element
- 2. Absence of metal contaminants
- No incompabilities with the production of a radiopharmaceutical for human administration
- 4. No interference with purification processes

Yttrium: ⁹⁰Y

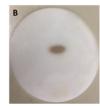
Copper: 64Cu/67Cu

lodine: 125I, 131I



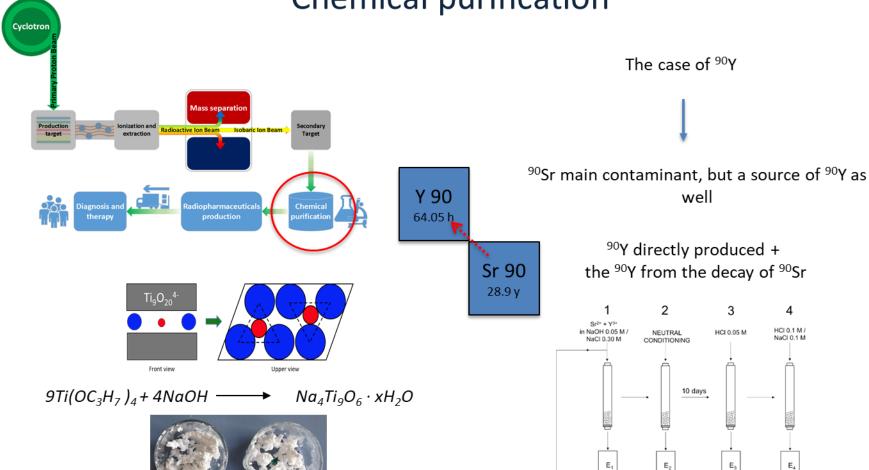

Copper beams

1) ⁶³Cu and ⁶⁵Cu identification (69.17% and 30.83%)



Ionization efficiency: 10%

2) 63Cu deposition


	Copper (current) measured in FC2 and integrated in time [µg]	Copper measured via GF-AAS [µg]	
1 st deposition	9.94	1.46	Target dissolved in HNO ₃ 0.5 M, mild heating
2 nd deposition	5.21	1.09	Target dissolved in HNO3 0.5 M, mild heating
3 rd deposition	1.12	0.54	Target dissolved in concentrated HNO ₃ , 180 °C for 20 min
4 th deposition	0.94	0.50	Target dissolved in concentrated HNO ₃ , 180 °C for 20 min

The ISOLPHARM network and related projects

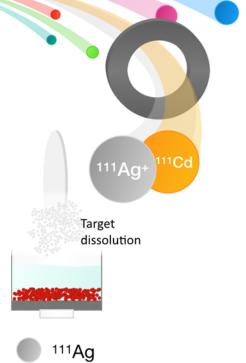
First new project derived from ISOLPHARM in collaboration with PSI

ISOLPHARM_Ag

¹¹¹Ag

Promising radionuclide for therapy:

- β^{-} emitter (average energy 360 keV)
- Low percentage of associated γ -emission (342 keV, 6.7%)
- $t_{1/2}$: 7.45 days


Development of Ag-based radiopharmaceuticals

Task 1: physics and computing

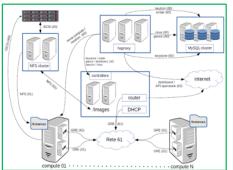
Task 2: production of Ag+, purification and chelators development

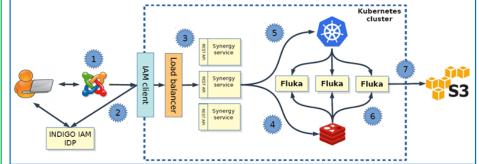
Task 3: cellular targets studies and radiopharmaceutical development

Year 2

Task 1: activities at LNL and UNIPD

	VIII D	М3	M6	M9	M12	M15	M18	M21	M24
Task 1 - Computing				MS1	MS2				MS3-4
Setup and maintenance of cloud			/						
Creation of dedicated workflows									
Development of a web-based user portal									
MC code development and running case study 1		7			\				
MC code development and running case study 2									
			•						

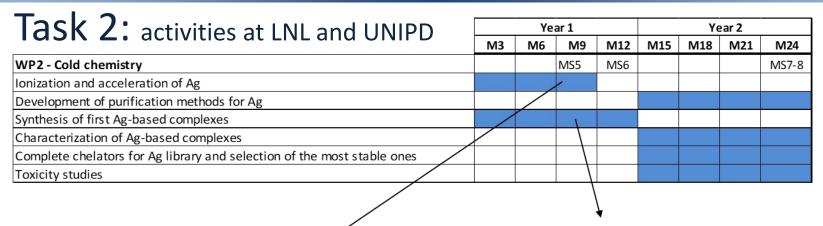

30-09-2018 MS1: Porting and operation of MC framework in cloud environment

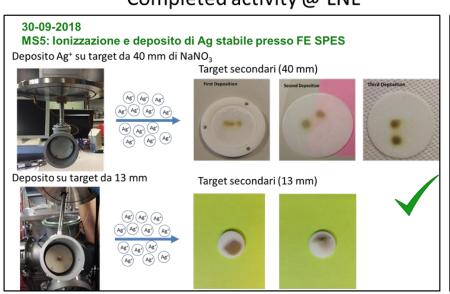

- Setup of the ISOLPHARM_Ag project in Cloudveneto infrastrucuture
- 2. Docker containers for Fluka and G4 created and used for real simulation on the cloud infrastructure (see next slide)
- 3. Common uniform description of input parameters for Fluka and G4

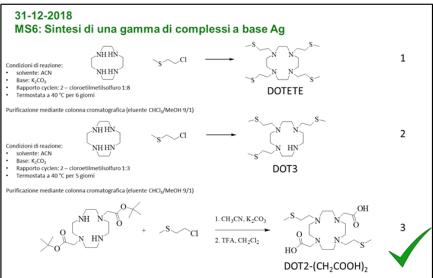
30-09-2018 MS2: First results of Ag production with different codes

Year 1

1. First production Fluka/G4 run starting in September on the cloud framework delivered in MS1

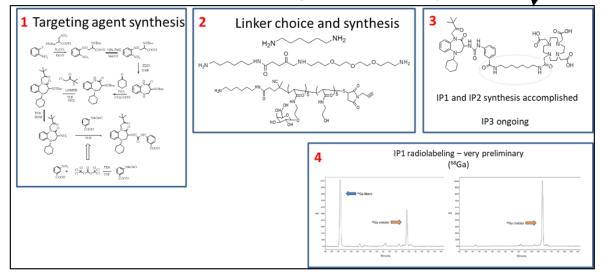






Completed activity @ LNL

Preliminar screening activity completed @ UNIPD, complete synthesis and preliminar characterization by the end of 2018



Task 3: activities at LNL, UNIPD and TIFPA

S a activities at fixe. Oigh is and in a											
3. activities at LIVE, OIVII D and TITTA	М3	M6	N	19	M1	2	M15	M18	M21	M24	
WP3 - Molecular biology					MS	9				MS10-11	
Synthesis of CRT-CCK2R targeted molecules				ı							
Radiolabeling of CRT-CCK2R targeted molecules											
Design of suitable 3D scaffold for in vitro tissue mimicking					\						
Setup of the dynamic cell culture conditions and exposure to ionizing radiation											
Targeting studies in dynamic conditions						\setminus					

Year 1

31-12-2018 MS9: First CRT-CCK2R targeted molecules synthesized

Preliminar screening activity completed @ UNIPD, complete synthesis and preliminar characterization by the end of 2018

Providing to cells a suitable artificial microenvironment capable of mimicking a living tissue is important to obtain reliable results with in vitro experiments.

Year 2

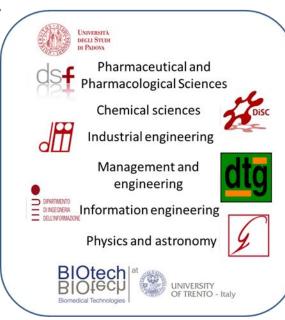
This can be obtained using degradable hydrogels leaded with cells (B16).

Materials chosen: chemically modified Gelatin and Silk Fibroin

Methacrilation procedure for Gelatin is **achieved**.

Methacrilation procedure for silk Fiborin is **in progress.***

Master thesis from September



The Italian Network

The International Network

6 invited talks at Italian and international conferences

Conclusions

At SPES it will be possible to **produce radionuclides for medical purposes** using the ISOL technique.

The ISOLPHARM method (patent deposited) is focused on the production of radiopharmaceutical precursors with **high specific activity** using a proton beam at intermediate energies.

The ISOLPHARM collaboration started 4 years ago. An increasing **experimental activity** is under development. **2 PhD thesis**, **10 master thesis**

Some radionuclides (as 111 Ag , 43 Sc, etc) are extremely interesting and could be used as precursors for **new radiopharmaceuticals**.

First step: to produce **first radionuclides of medical interest** for research (small quantities) when the first SPES RIB will be delivered.

