Target and ion source developments at CERN-ISOLDE

Sebastian ROTHE for EN-STI-RBS/LP

ISOLDE Target and Ion Source Development teams

The target team

D. Leimbach J. Ballof F. Boix Pamies Y. Martinez J.P. Ramos S. Rothe T. Stora

Valentin Fedosseev Section Leader EN-STI-LP

Katerina Chrysalidis Doctoral student Univ. Mainz

Bruce Marsh Staff Member EN-STI-LP

Camilo Buitrago CERN Fellow

Target and ion Source Development (TISD) mandate

Providing a large choice of intense and pure radioactive beams

Constant development is required to keep ISOLDE at the forefront of RIB facilities

- target and ion source units
- target materials
- beam interactions (p2n converter)
- ion source design / mode of operation shared with ISBM group

- yield & release study
- ion source efficiency measurements
- prototype tests

Sharing same resources as the ISOLDE physics program

- WORKSHOP: target unit production
- OFFLINE: target quality control
- ISOLDE: beamtime

ISOLDE Schedule 2018

Target production APR-JUN 2018

21 targets used / tested at offline6 Units for development11 Units irradiated at ISOLDE

	#614	empty	VD5	Mn tests PSI, Se tests ILL
\mathbf{X}	#633	Nb foil	MK4 negative LaB6	Development, GANDALPH
Á	#640	LaC	RILIS	In -> CRIS
\mathbf{X}	#650	MWCNT	VD7	8B -> IDS
	#627	Та	RILIS	Sc
	#567	Sn molten	VD7	backup for #534
	#657	No target	VD7	LIEBE test
	#651	ZrO	VD5	GeS /Ge -> COLLAPS
_	#652	ZrO	VD5	70Br
Э	#653	UC (UC-2018-01)	MK1-Ta	Cu
	#654	UC (UC-2018-02)	MK1-W	К
X	#626	Та	RILIS	Sc
\checkmark	#660	SiC	LIST - 90mm	22Mg
	#661	Empty	VD5	MD ISCOOL
٨	#655	Та	RILIS	Tb /Dy
\mathbf{X}	#570	n.a.	GANDIS	Gandalph offline source
	#656	empty	VD5	Mn tests PSI
	#658	UC (UC-2018-04)	RILIS	Bi
\checkmark	#502	empty	n.a.	n-Converter dev
\mathbf{X}	#628	empty	n.a.	nConverter / MEDICIS dev
	#634	empty	LIST - 34 mm	LIST development

Scandium beams

Target: #565 Ta foils

Clean ²⁰⁶Hg beams with VADLIS

- 3rd on-line application of VADLIS ion source for an experiment
 - (full Hg chain for in source laser spectroscopy; Mg + Ne for ISOLTRAP, 206Hg for Miniball)
- RILIS-mode achieves similar efficiency to VADIS-mode
- Note: RILIS-mode efficiency is expected to improve by at least **2 X** if the adjustableextractor VADIS is used.

B.Marsh

VADIS / VADLIS developments

Standard VADIS

VADIS Dev. [2]

Extraction plates -100 V

[2] Y. Martinez et al. In preparation

Successfully operated new VADLIS #630-MD

Boron fluoride beams

Principle:

 $B + 3 F \rightarrow BF_3$

Volatilization of refractory boron by injection of SF_6 gas

First prototype #499

- Small gas leak (3.7e-5 mbar L / s)
- Absence of TaF_x and SF_x in mass spectra

Unit did not produce BFx beams no fluorine saturation

Second prototype #513

- Increased leak (1.84e-4 mbar L/s)
- Strong TaF_x and SF_x peaks

Stable and intense 8BFx beams

First production unit #606

Despite high injection,

low fluorination, and presence of oxygen. H_2O or air leak?

Target #606 -> #650

MWCNT for 8BF2 beams at IDS

- 2017: #606 Target could not be delivered, #513 was used
- No infrastructure available to handle C nano tubes
- Decided to recuperate charge from #606 for #650
- Disassembly: transferline found clogged with AIF
- Target outgassed to remove contaminants
- Found macroscopic amount of Aluminum in transfer line
- Successfully used #650 for IDS run
- Factor 10 yield increase compared to #513
- > #650 rescheduled for HIE ISOLDE

LIEBE: Liquid Eutectic lead Bismuth for Eurisol

- Target material: LBE
- Operational temperature: [200-600]°C
- Targeted isotope: ¹⁷⁷Hg (130ms half-life)

- LBE Velocity preferred: 2 m/s → Q=0.13 l/s
- Ø0.4 mm droplets → factor 5 more release

Images from Melanie Delonca CERN Ph.D thesis

The LIEBE target: Assembled

LIEBE fully assembled and coupled to offline 1

LIEBE Offline commissioning: Leak issue

- Leak emergence:
 - Appropriate vacuum level reached with cold target
 - Leak appearing when heating ion source to 1700 °C

- New vacuum vessel designed and under construction
- Offline tests foreseen in JUL 2018
- Full offline Operation to be demonstrated for operational review

F. Boix Pamies

UCx production: Previous process

CARBURATION UO2+C

ds container 30,99 Pds cont.+UO2-C

Pds UO2-C

=D96

2UO (s) + 3 C (s)-> 2 UC (s) + CO2 (g)

Increase heating current

Monitor pressure via webcam

Write down values manually

Detect end of carburization by pressure drop

Dates	Heure	Pression	I(A)	U(V)	OT	TT	Observations
14.08	Ishoo	108-5	0	Õ		2	\$ 50A (1A /60 sec
	16468	1.2E-5	50	0,07.			R 804 4
15.08	9hos	2.0E-6	80	\$ 10		1	18 150M (-14/ 60 Acc)
	7454	5,78-5	130	0,17			A 4
	Acho 8	1,5E-5	144	0,21			4
	10435	1,1E-4	150	921			P150 A -
	Mhor	88E-5	150	0,21		í	\$ 160 A (.I.A / 60 Me
	11452	6,05-5	160	0,24			~ 188VA M
	13/10	1,9E-5	180	928		S	PETON 4
	13435	1,5E-5	202	0,31			2 250 A /AA /30 Acc
	14/19	1,48-6	02	0			coupure s210A (MA)
		43E-6	210	935			~ 230H / 14/30 M
	16450	698-6	230	0,38			× 440A (1A/600 ta)
18.08	10400	8,5E-S	450	1,46			A 460 H / 14 / 120 sec)
19.02	13/20	8,9E-5	160	1,49			R'GTON U
21.08	9447	5,98-5	470	156			12490M 4
	10458	128-4	440	1113			R4951 4
	13440	12E-4	195	1,67			10 500H . U
	15415	1,3E-4	500	1,70			A 5054 4
	17635	1,4E-4	505			1	10 5204 (-11/20mn)
22.08	9110	115-4	520	1,81			· 18 530A /11 / 10 Dec)
	11450	118-4	520	1.91			17 570 A (1 A) logec)
	15/10	16E-4	570	208			~650H (1A/2012
25.08	10h 15	4 2E-7	600				7 650 A (minutes)
	10420	2.38-6	650	2.26			
	10453	1.5-10-6	650	2.43			167-54 (manully)
	11410	2.1 104	6:25	2.54			17004 11
	11620	38-10-6	700	2.66			PZZSA V
	111.30	1.4.105	1225	2.86			ガチンジル
	11440	38.15	775	3.16			1 850A "
	11450	5-6-105	850	375			1 500 A "
	124 10	6.1.105	300	3.92			
	1403	6.1-10-6	300	3.30			VOA

May result in inconsistent carburization. Time consuming (~10 days).

Automatic UCx Production

- Setting a ramp
- Set thresholds
- Start carburization

Heating is regulated automatically

Successfully used for **UC611** and **UC618** Finished in **4 days** without human intervention Used for UC and ThC production throughout 2018

LIST v 1.0

HFS studies of polonium / supression of francium (IS456, September 2012)

Isobaric suppression > 1000, efficiency loss \approx 50

On-line implementation and first operation of the Laser Ion Source and Trap at ISOLDE/CERN, D. Fink et al., NIMB 344, 83-95 (2015)

In-Source Laser Spectroscopy with the Laser Ion Source and Trap: First Direct Study of the Ground-State Properties ^{217,219}Po, D. Fink et al., **PRX 5**, 011018 (2015)

16

Results: 90mm "standard" LIST /w 2 repeller electrodes @ ISOLDE

- ²⁴Mg laser ion loss factor ~ 20-30 (as seen off-line)
- Required repeller voltage slightly reduced Suppression factor > 50.000

Final on-line characteristics with SiC target:

17

- Suppression factor: **1E6** (²¹Na)
- Laser ion loss factor: **27** (on ²²Mg)
- No ²²Na seen in IS614 detectors

Ongoing developments

S. Raeder et al., Rev. Of Sc. Instr. 85, 033309 (2014)

Voltage [V]

50 -

40

30

20

-10

-20

-30

-40

Square wave RF confinement by MHz switching:

• suppression of RF box attached to target unit

MM

• simplified control of symmetricity, amplitude, offset

1.5

.0

0.5

0.0

-0.5

-1.0

AMA

2

Current [A]

• Supply to source via multipin connector

Charging current

M.M.

Time [µs]

RF signal

ToF-LIS: Field-free drift volume (= LIST)

In-situ heating current switching: Fast polarity swapping and pulsing

Perpendicular laser irradiation: Doppler-free spectroscopy and RIB production

R.Heinke

Low work function materials for negative ion production

MK4 – Pellet source

Tubular low workfunction cavity

Improvement of ionization efficiency:

- Elements with low affinities are not efficiently ionized by LaB₆
- New compounds needed:
 - SrVO₃ with expected work function <2eV

First steps:

- Production of suitable candidates
- Electron emission tests with LaB₆ as benchmark
- Performance studies

Next steps:

Compare geometries offline

D.Leimbach

#570 GANDALPH negative Ion source (GANDIS)

- Goal: off-line testing of photodetachment setup
- Ion extraction via negative source potential
 - Electrical Isolation of the source from the base avoids faraday cage

D. Leimbach

> external heating required

Dedicated test stand for ion source development

Main features:

- ion beam extraction and detection
- residual gas analyzer (RGA)
- automated control and data recording (LabVIEW)

First application:

- negative ion source development
- investigation of source poisoning and regeneration

Future plans:

- long-term performance studies
- thermal stress tests
- destructive tests
 - operational limits
 - failure mode analysis

D.Leimbach

Ion source simulations: VSim

Is a flexible, multiplatform, multiphysics software tool for running computationally intensive electromagnetic, electrostatic, magnetostatic, and plasma simulations in the presence of complex dielectric, magnetic, and metallic shapes. (https://www.txcorp.com/vsim)

Goal: Full Simulation VADIS ion source

• 1st reproduction of electrostatic field distribution inside the VADIS using PIC code

[1] T. Day Goodacre et al., NIM B 376, 39 (2016). [2] Y. Martinez et al. Accepted.

Temperature (Celsius) Validation of hot cavity ion source 1127 1177 1227 1277 1327 1377 1427 1477 2.5x10⁻⁶ model: LaB6 Richardson law fit electron emission measurements 2.0x10⁻⁶ electron current [A] performed at CERN-ISOLDE 1.5x10⁻⁶ (ongoing) 1.0x10⁻⁶ Collaboration with 5.0x10⁻⁷ 0.0 1600 1650 1700 1750 1400 1450 1500 1550 Vsim workshop @ EMIS2018 Temperature parabola fit (K) Registration is open. Link via EMIS2018 website D. Leimbach

Ion source simulations: VSim software

23

P2n Converter

ENGINEERING

New / Old

p2n Challenges: beam heating

2150 °C have been reached in the target

ISOLDE Yield Database YYDB(https://isoyields2.web.cern.ch)

Features

- CERN SSO
- New Database design
- In target production (ABRABLA, FLUKA)
- Release curves available
- More target details visible
- Issue tracking

Philosophy

- All measurements (TISD, USERS) get entered into YYDB
- Manually change attribute (measured -> validated -> published)
- Attribute determines visibility
- <u>Future</u>
- Web based interface allows entering of yields to registered users
- Add yield prediction
- Establish link to CRIBE database

TISD @ ISOLDE, 2018 (in order of appearance)

- **Dedicated TISD**
- RILIS offline work Q1-Q2
- LIST 2.0 Q2
- M(CO)x formation @ MEDICIS irradiation point Q2-Q3
- p2n converter prototype test Q3-Q4
- LIEBE online Q4

Opportunistic TISD

- Si yields Q2-Q4
- RILIS 2photon online Q1-Q4
- VADLIS 1.5 online use Q2-Q4

Planned for #658

Offline tests required, ongoing

Thanks to the TISD and RILIS teams

Volatile Carbonyl Compounds for New Refractory Beams at ISOLDE

J. Ballof^{1,2}, C. Seiffert¹, Ch. E. Düllmann^{2,3,4}, J. P. Ramos¹, S. Rothe¹, T. Stora¹, A. Yakushev^{3,4}

J.Ballof

Tellurium beams

Те

RILIS

			-		
A (Te)	t1/2	Te Yield	Cs yield	t1/2	A (Cs)
132	76.3	5.40E+08		6.47 d	132
133	12.5 m	7.50E+07		stable	133
133m	55.4 m	1.50E+08		stable	133
134	41.8 m	1.90E+08	1.10E+09	2.90 h	134m
135	18.6 s	5.40E+06	5.50E+08	53 m	135m
136	17.5 s	5.40E+06	5.30E+08	19 s	136m
137	2.5 s	1.20E+05		30.17 y	137

1200

1E+09
0
1E+09
1E+09<

Target #601 UC n

137Te yield

MWCNT Target production for #606

CERN safety has forbidden any handling of nanomaterial

• Nanomaterials are requested at ISOLDE for physics (in this case MWCNT)

Powder technology laboratory in EPFL, has a class "nano 2"

 Accordingly to EPFL specifications "nano 3" is needed to handle MWCNT (need to have the nanomaterial sealed in glovebox)

Glove bag was bought from Sigma Aldrich and used instead of Glove box.

 Possible solution to lift the prohibition of handling nanomaterials

Successful press of full batch of MWCNT for ISOLDE target #606

J.P. Ramos, B. Crepieux, T. Stora, et al.

Target Materials

What	Why	How	Where	Who
Ensure non-actinide nano material production	faster release/higher yields	Derogation / Collaboration / Initiate non-actinide nano lab at CERN	Offline chemical lab /?/?	JPR
Optimize target heating	Reproducibility Uniformity of temperature	Collaboration w. SPES	Offline Pump stand	DOCT1 / FELL1
Investigate UCx sintering	Optimize Release	Sequential thermal treatment + characterization / on- line sintering at synchrotron beam line	Class A + MME labs / tbd	JPR,srr
Investigate Material Pre-treatment	Avoid contamination	Chemical reactions (etching etc)	Chemical lab Offline	Srr, Collaborations ?
Study Molecular beam chemistry	Volatilization and/or Purification	Develop dedicated setup	Offline /ext.	JB Collaborations
Optimize UCx production	Reproducibility	More observables during production	Class A	srr
Investigate ThCx	Higher yields in specific regions	FLUKA, reactivating procedures	Class A	BC,JPR

Target Materials

What	Why	How	Where	Who
Neutron converter (s)	High Purity High Production	Design iteration	ISOLDE	JPR, coll. With TRIUMF
Mass marker development	More control, Avoid cold spots	Simulation, Iterative testing	Pump stand + RGA	DL, FELL Collaboration
Autopsy of used targets	Learn from failure, improve future designs	List of priorities, Open targets in hot cell	ISOLDE Hot cell	PGH

lon sources

What	Why	How	Where	Who
VADLIS 2.0	Improve RILIS mode Validate reliability	Simulations Design iterations Testing	Offline	DL, ISBM
COLD VD7	CO beams, fragile molecules	review design (from PS), construct, test	Offline	DOCT2, FELL2
Ion source simulation	Starting point for optimization	VSIM Collaboration	in silico	DL, FELL SCK
TOFLIS	Beam purity	High ohmic cavity Drift region Fast beam gating Integrate LIST	Offline ISOLDE	SW, Fell1, ISBM
2 Photon laser ionization	Resolution for in source spectroscopy isomer selectivity Accessibility to other elements	Mirror in ion source PI-LIST	offline	KC, RH
Negative ion source	Yield, purity Rectify design	Simulation, testing. Develop new low work-function materials	offline	DL, FELL

lon sources

What	Why	How	Where	Who
Integrated yields + stress test	Optimize lifetime + efficiency	Long-time performance tests, destructive tests	New ion source test stand	DL, FBP, FELL
RILIS General R&D	Increased range of accessible elements, isomer selectivity, reliability	Spectral range Laser and lab infrastructure, Bandwidth optimization, ion source developments	RILIS, Offline	RILIS & ISBM

Dedicated session in next GUI

Infrastructure

What	Why	How	Where	Who
Improve VADIS gas distribution system	Measure pressure Ensure purity	Add gas loop, recirculation pump & filters	OFFLINE, then ISOLDE	JB, FELL
Upgrade beam gate switches	No spares. No high frequency possible	Test fast BG during 2018 at GPS Specify product with manufacturer	OFFLINE, ISOLDE	SW, srr ISBM
Build second pump stand	Dedicated ion source test stand Lifetime tests + integrated yield measurements	Copy of existing Pump stand	LARIS, then OFFLINE	DL, BC
Intensify use of RGA	Monitor Target and ion source behavior already during heating process	Survey, then purchase .	Offline, Pumpstands, Class A	Srr, LV support
Improving YIELD database	Link to target documentation Add yield prediction Add user interface Add interface to CRIBE	Test during 2018, collect feature requests	CERN	JB, FELL2, srr, Users

Infrastructure

What	Why	How	Where	Who
Improve target documentation	Spread of information -> Single entry document required. Track target location, link to control system	EDMS, infor, Link databases	ISOLDE	srr, BE-OP, Target production, RP, Users, LV support
Upgrade Isolde Timing System	Not very user friendly	Review specification	ISOLDE	TG
Lasers at OFFLINE 2 and MEDICIS	RILIS is most efficient and selective ion source.	Install full laser systems	Offline 2 Medicis	RILIS, KU LEUVEN/PROMED, Umz,
RILIS control system upgrade	Current system not easy to maintain by LV support	Employ (shared) PJAS Refactoring of RILIS control software	RILIS	BM, PJAS @ LV support
Development of unified controls system for Offline machines	Synergies, Still features missing Improve stability More automation	Employ (shared) PJAS Dedicated development time at offline machines.	OFFLINE	srr, PJAS@LV Support
Improve target health monitoring	Enable preventive actions	Link production rates from experiments permanent yield checks set up display for target health	OFFLINE, ISOLDE	srr, Users, BE-OP, LV support

