

General advancement of Target & Ion Source studies in the BeamLab Task

Maher CHEIKH-MHAMED

on behalf of the Beamlab Collaboration

2nd July2018

EURISOL Town Meeting, Pisa

Beamlab

EURISOL Town Meeting

chaired by Angela Bonaccorso (PI), Yorick Blumenfeld (CERN), Marek Lewitowicz (GANIL), Berta Rubio (CSIC Valencia)

from Monday, 2 July 2018 at **08:00** to Wednesday, 4 July 2018 at **18:00** (Europe/Rome) at **INFN - Pisa (Aula 131)** INFN - Pisa Bldg, C - ground floor Largo Bruno Pontecorvo, 3 I-56127 Pisa Italy

Monday, 2 July 2018

14:00 - 16:00	Session 1: Target Studies Convener: Alberto Andrighetto (INFN - LNL)			
	14:00	Highlights on target and ion source studies in the BEAMLAB task 20' Speaker: Maher Cheikh Mhamed (IPN Orsay -CNRS)		
	14:20	The SPES target, ion sources and beam transport 25' Speaker: Mattia Manzolaro (LNL)		
	14:45	Target Developments at SPIRAL 20' Speaker: Predrag Ujic (GANIL, Caen, France)		
	15:05	Target and ion source developments at CERN-ISOLDE 20' Speaker: Sebastian Rothe (CERN) Material: Slides		
	15:25	FEBIAD ion source optimization at the ALTO facility 20' Speaker: Ailin Zhang (IPN Orsay -CNRS)		
	15:45	Activities on Beamlab at IFJ PAN in Krakow 15' Speaker: Ryszard Misiak (IFJ PAN)		

Beamlab

Main Scientific Objective :

producing nuclear beams which are challenging because of chemical reactivity of the nucleus element

Involved Laboratories:

CERN, GANIL, IFJ – PAN, IN2P3 – IPNO, INFN – LNL

Beamlab

• Project Leader:

Maher Cheikh Mhamed (IN2P3 – IPNO) Laboratory Coordinators :

- CERN : T. Stora
- GANIL : P. Delahaye
- LNL-INFN : A. Andrighetto
- IFJ-PAN : J-W. Mietelski
- IPNO : M. Cheikh-Mhamed

Project task break-down (1)

Beamlab includes 4 subtasks:

• Subtask #1: Efficient ion sources for difficult ISOL beams

 Works focus on the plasma ion source behavior as a function of the injected vapors and optimization of key parameters of such ion sources

> Task leader: P. Delahaye (GANIL) Involved partners: CERN, LNL-INFN, IPNO

• Subtask #2: Material compatibility in reactive gas atmospheres

Works focus on:

- Studies of the surface of material involved in the Target-Ion sources components
- Studies on material and physicochemical properties as a function of the temperatures obtained during the operation of the Target-ion source unit.

Task leader: A. Andrighetto (LNL-INFN)Involved partners:GANIL, IJF PAN, IPNO

Project task break-down (2)

• Subtask #3: New molecular beams

 Developments are focusing on the production of molecule beams : by fluorination, by creating a volatile sulphide compound and creation of transition metal polycarbonyl complexes molecules

> Task leader: T. Stora (CERN) Involved partners: GANIL, LNL-INFN, IPNO

• Subtask #4: Specific targets designs for non-volatile elements

Works focus on :

- Optimization of the target configuration
- Development of targets to catch the recoil fragments in a reactive gas
- Development of Light targets for the production of refractory beams Task leader: M. Cheikh-Mhamed (IPNO)

Involved partners: CERN, GANIL, LNL-INFN, IPNO

D 14.2: Report on R&D on radioactive plasma ion sources (Month 36)

D14.4: New targets, ion sources and beams (Month 48)

R&D on radioactive plasma ion sources (1)

Works focus on the plasma ion source behavior as a function of the injected vapors and optimization of key parameters of such ion sources

General improvement of the SPES Plasma Ion Source design: the optimized cathode and the alignment system

Ongoing characterization in terms of transversal emittance (varying different parameters) and ionization efficiency (for the following elements: Ar, Kr, Xe, Sn, Al, Ag, ...)

cathode optimized to avoid hot-spots and to maximize the anode current (electron current impinging the anode)

anode currents up to 250 mA (Vanode = 150 V)

cathode alignment system reducing the thermal axial deformation of the cathode surface facing the anode

this is a good point to prevent the anode-cathode contact

R&D on radioactive plasma ion sources (2)

Motivations:

Very promising potentials of the 1st & 2nd prototypes \rightarrow *Optimized prototype:* Thermionic emission studies, electron mean life time and beam extraction for IRENA ion source

02nd July 2018

R&D on radioactive plasma ion sources (3)

VADIS / VADLIS developments

RILIS

02nd July 2018

R&D on radioactive plasma ion sources (4)

GANIL Work :

1+ beams from metallic elements with T_{fusion} <2000°C

Different tests at SIRA and SPIRAL 1 Coupling of the SPIRAL 1 targets with the VADIS

> Already 7 new elements Na, Mg, Al, P, Cl, Cu, Fe + many more to come

O. Bajeat et al, NIM B 317(2013)411

- The FEBIAD source has been thoroughly tested and is ready for on-line operation
 - >3 weeks operation has been proven possible
 - Stable efficiencies, some improvements possible (?)

R&D on radioactive plasma ion sources (5)

 At CERN, operational parameters of the radioactive plasma ion source VADIS have been optimized for the Boron beam productions.

Boron is difficult to extract:

- Low Volatility (m.p. 2076 °C)
- Reactive, forms stable compounds with many materials

It was found that, higher anode voltages brought higher ionization efficiencies for BF2 beams.

02nd July 2018

New targets, ion sources and beams(1)

New targets, ion sources and beams(2)

Off-Line tests

MK5: the more CF4

injected, the higher

the intensity of the lanthanide beams

Fluorinated molecular beams

Measured beam intensities with the SI ion source are clearly higher than those measured with the MK5 ion source

EURISOL Town Meeting, Pisa

New targets, ion sources and beams(3) Sulphide molecular beams: SnS, GeS

¹³²SnS for HIE ISOLDE

Contaminations expected on atomic ¹³²Sn:

Mass	Yield / uC	Cond.	
¹³² Cs	7.1e+09	WSI-SC	
¹³² Te	7.0e+08	MK5-SC	
132	2.7e+08	MK5-SC	
¹³² Sb	1.0e+08	MK5-SC	
¹³² Sn	3.0e+07	MK5-SC	

Clean beams required

- Some preparatory tests and observations are going on

- A join experiment between different partners at IPN Orsay for SnS production is forseen in 2019

Contaminations

too high for experiment

New targets, ion sources and beams(4)

Reaction kinetics of oxidation Ta in vacuum IFJ PAN

Figure. Weight gain/area vs. oxidation time for different temperature. 16

Oxidation of tantalum has been studied at 1003-1363 K and at oxygen pressures from 1x10⁻³ to 2,5x10⁻⁴ mbar (which corresponds to the flow rate of oxygen from 7,2 mL/min to 128 m/2/min). EURISOL Town Meeting, Pisa

New targets, ion sources and beams(5)

p2n-converter 1901**3**2

15

-10

x (cm)

Brings high purity neutron-induced fission fragments, roton Fluence

Converter very close to uranium carbide - high neutron flux!

New targets, ion sources and beams(6)

New photofission target for the ALTO Facility

- New protocol of fabrication for larger pellets is under investigation
- ANSYS thermal simulations to investigate target thermal behavior and benchmarking measurements are going on
- On-line tests @ ALTO facility with the collaboration of the nuclear physics group Nester are foreseen for the end of 2019.

New targets, ion sources and beams(7)

Fusion evaporation targets

Ongoing developments To be tested at SPIRAL at the earliest in 2020 Fusion evaporation target ion source development

neutron deficient isotopes such as ⁷⁴Rb, ¹¹⁴Cs, N=Z for DESIR

Offline test 2017-2018 Ionisation efficiency and rapidity measurement Online test at ALTO earliest 2019 Online test at SPIRAL earliest 2020

Thank you!