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The possibility of reaching systems that are progressively closer to the drip lines 
(and that can eventually go beyond) has raised an increasing interest on the role 
 of continuum states, both in structure and reactions, both theoretically and  
experimentally. 

In nuclear structure one faces the situation not only of low-lying excited states  
that are above the particle emission threshold (that are therefore naturally in the  
continuum), but also the situation of bound states whose description and nature 
rely on the coupling to the close continuum states. 

Similarly in nuclear reactions, due to the vicinity of the continuum,  a ruling  
role is played by final states in the continuum (break-up channels).  But again 
this dominant coupling to the continuum is strongly affecting also the  
characteristics of the population of final states that are in the bound sector. 



Other example:
Sn isotopes
(Lanza etal, 2009)

The problem of continuum, and simple solutions, are however an old story. 
For example in the description of giant resonance with DISCRETE RPA, where 
the strength of each high-lying state is distributed along a gaussian or lorentzian , 
as a simpler alternative to a full continuum RPA 

Example: Dipole response, with GDR and PDR, with Skyrme HFB plus RPA 

NB Of course, additional contribution to the full width comes from the 
coupling to 2p-2h states (mixing width) 



Many microscopic structure models (typical example the Shell Model) are 
based on an expansion starting from a single-particle basis (generally truncated). 
Leaving the stability valley the number of (Fermi allowed) available bound states 
reduces, and the continuum part of the spectrum has to be included. 
Generally one resorts to appropriate DISCRETIZATION procedure, in order to 
deal with a set of square-integrable states.   

Typical methods (that provide different distribution and energy densities of state) 
are based on 
•  Harmonic oscillator (HO) 
•  Transformed Harmonic Oscillator (THO) 
•  Box with infinite wells 
•  Gamow complex states 
•  Bunching of true continuum states into slices (CDCC) 

All models are equivalent as long as one uses the full basis, but convergence may  
require extremely large bases, in particular for the tail and for weakly-bound  
states. 
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Example: a Woods-Saxon  
one-dimensional potential 
with a weakly-bound state, 
obtained by diagonalizing 
in a chosen basis 

Box procedure, with R=200 fm. 
In the figure the lowest  
discrete basis states 



Example: Diagonalization in a box 

WS single-particle states obtained imposing boundary conditions at a box (R=20 fm) 

positive  
energy 
pseudo- 
states

bound 
states
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Box, with 
different 
radial  
dimensions  

HO, with 
different 
number of  
quanta  

THO, with 
different 
number of  
quanta  

Energies of the bound states converge rather rapidly, but not the radial tails. 
Large dimension are needed to get acceptable behaviors at large distances 



Bound and unbound nuclear systems at the drip lines: a one-dimensional model 10
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Figure 6: B1 (upper four panels) and B2 (lower four panels) energy distributions

calculated starting from the third bound state in HO, THO, and BOX cases (using

NHO = 250, NTHO = 85, and xb = 100fm). In the last rows the Tot(B1) and Tot(B2)

convergence to the expected values (green dotted lines) are reported as a function of

energy.

where | bi is the bound state wave function (| 2i in our case) and {| ii}Ni=1 is the set

of bound states plus pseudostates. In the large N limit, due to the basis completeness,

the TSSR is given by

lim
N!1

S(b)
T (O, N) = h b|O2(x)| bi (13)

and can be easily calculated numerically from the bound state wave functions. These

values are depicted in figure 6 as green horizontal dotted lines and, as one can see, we

find a good agreement for all discretization procedures.

Another useful quantity to assess the goodness of a continuum discretization is the

Energy Weighted Sum Rule (EWSR)

E (b)
W (O, N) =

N�1X

i=0

(Ei � Eb) | h b|O(x)| ii |2, (14)

where, again, | bi is the bound state wave function and {| ii}Ni=1 is the set of bound

Particle-hole response from the 
weakly-bound state to the 
“discretized” continuum 

									B1=|<ΦC	|x|	Φb>|
2	

NHO=250 

NTHO=85 
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Example of convergence: 
the case of the THO basis 
with different number of 
quanta 



Interplay of resonant and non-resonant continuum 
(leads to caution in the choice of energy step in discretization procedure) 

An example: quadrupole excitation of 7Li described as alpha+triton model 

November 2002 CM2002, Aizu 21 

7Li 

α+t channel 

7/2- resonance 

3/2- 

1/2- 

Multipole strength obtained by  
promoting initial bound  
cluster-cluster p-state 
wave-function to cluster-cluster 
continuum wave functions 



November 2002 CM2002, Aizu 23 

Quadrupole strength 

p1/2 
f7/2 

f5/2 

Energy above threshold 

non-resonant 
continuum 



Moving from the case of just one particle in the continuum to cases with more 
particles in the continuum.  More interesting because it involves continuum-
continuum couplings 

Simple test case in structure 
Two valence particles, moving in a one-dimensional  
Woods-Saxon potential V0, interacting via a residual 
density-dependent short-range attractive interaction. 
Modelling a drip-line system, one can choose the Fermi surface in such a way 
that there are no available bound states, and the two unperturbed particles 
must be in the continuum.  The residual interaction  

V(x1,x2) = V0 δ(x1-x2) ρ((x1+x2)/2)/ρ0 
can be chosen in such a way that the final correlated wave function is 

however bound.  Such a system is normally called “Borromean” 



Correlated energy of the two-particle system 
(as a function of the box radius)

physical two-particle 
bound state

unphysical two-
particle states 
(basis dependent)



Correlated 
two-particle  
wave-function 
expanded over 
discretized 
two-particle  
positive energy 
states 

OBS Enormous  
number of 
components 

R=15fm

R=40fm



Application to the ground states of 6He (bound), 22C (bound) and 
26O (unbound) 

Core+n – subsystems 
21C

25O

All these core+n potential are fixed and checked after doing phase shift analysis.

SET 1- Phys. Rev. C, 74, 034311, (2006).
SET 3- Phys. Rev. C, 94, 024620 (2016).

Phys. Rev. C, 93, 034330, (2016).

Example: 26O described as 24O+2n with density-dependent pairing and  
continuum discretization 

Resonant and  
non-resonant  
continuum 

Non-resonant  
continuum 

26O- Ground state configuration mixing (Preliminary)

DD-Density dependent pairing interaction has been used for this case.
K. Hagino and H. Sagawa, Phys. Rev. C 93, 034330 (2016).

ΔE lj DD (Present 
work)

Hagino

d3/2 0.660 0.661

0.2 p3/2 0.089 0.105

f7/2 0.250 0.183

d3/2 0.643 0.661
0.1 p3/2 0.088 0.105

f7/2 0.268 0.183

Configuration mixing of ground state 0+ on 26O 

Singh,  
Fortunato,  
Vitturi	



A different approach: BCS with discretized continuum states 

Important points: 
•  what is the shape of the occupancy of the different continuum 
states?  
•  how changes the pairing gap as the Fermi energy crosses the 
continuum threshold? 
•  what is the interplay of resonant and non-resonant continuum? 

the total uvå is still far from zero. The existence of this subshell closure in carbon is under
investigation [52]. Figure 16 shows that pairing to the continuum may change the behaviour
of 22C. In any case, deformation will change the gap and alter the present results. Another
interesting fact is that this product is largely asymmetric in the carbon isotopic chain which
reflects the impact of the continuum. In the oxygen case, since 24O is not superfluid, the total

uvå shows an almost symmetric parabola centred around 20O.

4. Conclusions

We have demonstrated that the THO basis can be profitably used in the solution of the BCS
equations with a discretised single-particle continuum. The single-particle Hamiltonian is

Figure 15. Density of occupation in the continuum for 22C for the different partial
waves.

Figure 16. Segrè chart with the total sum of the product uv for the different oxygen and
carbon isotopes. Stable nuclei are shown in black and those nuclei which are stable
with respect to particle emission, in light grey.

J. Phys. G: Nucl. Part. Phys. 00 (2016) 000000 J A Lay et al

16

v2 occupancy 
factors 

Lay, Alonso, 
Fortunato, 
Vitturi, 
J.Phys. G 

Cf also 
Id Betan 

THO discretized 
pseudo-states 



Basic problem: how the properties of the pairing interaction 
eventually change as the Fermi surface crosses the continuum 
threshold 

Example: proton knocked-out from 27F 

In 27F the 9 protons create a neutron mean field that binds 
The last two neutrons.  On the other hand, in 26O, the remaining  
8 protons cannot bind the two neutrons.  But the correlations in the  
bound neutron pair is the same as in the unbound pair?  How sensitive  
are the correlation to the form of the pairing interaction? 
Density dependent? Volume or surface pairing, or proper mixture? 



Main model in well-bound systems: Sequential two-step process.  

Each step transfers one particle 

Pairing enhancement comes from the coherent interference  of the 
different paths through the different intermediate states in (a-1) and (A
+1) nuclei, due to the correlations in initial and final wave functions 

Basic idea: dominance of mean field, which provides the framework for 
defining the single-particle content of the correlated wave functions 

Expansion to second-order in the transfer potential 

Simultaneus       +                 Sequential             +        not-orthogonality 

(first-order)                      (second-order)                   (second-order) 

these two terms  
approximately cancel 
each other 

this is not the 
cluster 
contribution 

How all this will be reflected on two-particle transfer processes? 



Basic problem: 

how is changed the picture as we move closer  
or even  beyond the drip lines? 



A	

A+1	

A+2	

j2	

j1	

E=0	

Systems  
closer to the drip 
lines 
(intermediate  
bound and unbound 
states) 

Example	
|A=2>	=	{	ΣiXi[ai+	ai+]0+	∫	dE	X(E)	[a+(E)a+(E)]0}	|A>	

one-parCcle	
transfer	to	
conCnuum	



continuum

one-particle 
transfer process 

A

A+1

A+2

Two-particle trasfer will proceed mainly by 
constructive interference of successive transfers  
through the (unbound) continuum intermediate states

Systems  
at the drip lines 
(intermediate  
unbound 
states) 
Example 
11Li(p,t)9Li 
8He(p,t)6He 

|A=2>	=	∫	dE	X(E)	[a+(E)a+(E)]0	|A>	



Discretized 
continuum

one-particle 
transfer process 

A

A+1

A+2

The integration over the continuum intermediate states 
can becomes feasible by continuum discretization: 
but how many paths should we include? Thousands or few, 
for example only the resonant states?



Let us move now to the reactions.   
For weakly-bound systems the break-up channel becomes dominant. 
To describe the physical aspect let me consider a simple one-dimensional case 

Single particle, initially moving in a    one-dimensional  
Woods-Saxon potential V0, perturbed by a  
time-dependent interaction V(x,t), assumed to be of  
gaussiam shape 

V(x,t)=V exp(-t2/σt) exp( -(x-x0)2/σx)     

x0	

x	

Obs: simulation of the nuclear field generated in a collision with 
a heavy partner	



Exact full evolution of the system obtained 
by solving the time-dependent Schroedinger 
equation  

        ih∂Ψ(x,t)/∂t = [H0 + V(x,t)] Ψ(x,t)  

with 

        H0 = -(h2/2µ) d2/dx2 + V0(x) 

The particle is 
assumed to be initially 
in one of the bound states 
ΦN(x) of V0	

1	
2	

4	
3	

5	

N	



Obs: change of scale	

bound states	

continuum 
 states	

initial bound state 

           N=3 

Final wave function NOT 
confined in potential well 



wave  
function	
Φ (x,t)2	

current 
distribution 	

momentum  
distribution	
φ (k,t)2	

Initial 
time 	

Final 
time 	

time 



The same problem can be approached in 
the ''standard'' coupled-channel formalism 
where the Schrödinger equation is solved by  
expanding the total wave function into a stationary  
basis.   
In this case the choice and the treatment of  
continuum states are already essential in the 
proper description of the evolution of the system  	



Eb1	 Eb1	

EbN	

Eb2	

Ec	

.	

.	
Eb2	

EbN	

Ec1	
Ec2	
Ec3	
Ec4	

    Σ Φi><Φi +	

∫dΕ Φ(Ε)><Φ(Ε)	

   Σ Φi><Φi  (bound)+	

Σ Φj><Φj  (continuum) 

! 

! 

! 

Slicing the continuum (ΔE) 



Coupling matrix elements in the stationary basis	

Bound-bound 

Fij = <Φi(x)|v(x)|Φj(x)> 

Bound-continuum 

Fi (Ej) = <Φi(x)|v(x)|Φ(Ej;x)> 

Continuum-continuum 

F(Ei,Ej )= <Φ(Ei;x)|v(x)|Φ(Ej;x)> 

Ej	

Ei	



Case of partial  
break-up 
starting from a  
deeply-bound 
orbital (N=3) 

Final Q-value 
distribution 

Different value of 
the energy mesh Δ



Case of partial  
break-up 
starting from a  
weakly-bound 
orbital 

Fundamental role of  
continuum-continuum 
couplings	



Case of partial  
break-up 
starting from a  
weakly-bound 
 orbital 

Role of  
multistep 
processes	



Effects of continuum channels: another simple case. 
Processes involving just one active particle 

and two moving cores (possibilities of inelastic, transfer and break-
up channels) 

Our particle is initially sitting on a single-particle level of a one-
body potential and feels the action of a second moving potential. 

At the end of the process the wave function of the particle is 
a) partly inside the initial well (elastic and inelastic processes) 

b) partly inside the moving well (transfer process) 
c) partly moving outside of the two wells (break-up process) 

The different components can be obtained by projecting the 
final wave function on the eigenfunctions of the two wells, as well 

as on the continuum states  





The two moving 
potentials 



Time evolution 

Potential 

Wave  
function 

Current 

long tail in  
initial state 



Time evolution 

Potential 

Wave  
function 

Current 

long tail in  
initial state 



Time evolution 

Potential 

Wave  
function 

Current 

long tail in  
initial state long tail 

 effect 



Time evolution 

Potential 

Wave  
function 

Current 

long tail in  
initial state 



Time evolution 

Potential 

Wave  
function 

Current 

long tail in  
initial state 



Time evolution 

Potential 

Current 

long tail in  
initial state 

break-up 

elastic 
28% transfer 

Continuum 
Q-value  
distribution 

Wave  
function 

Potential 



Final 
population 

Exact	 CC	(with	only	
bound	
states)	

CC	(with	bound	
and	con7nuum	
target	states)	

CC	(with	bound	and	
con7nuum		states	in	
both	target	and	
projec7le)	

elasCc	 20.7	%	 95	%	 21.4	%	 21	%	

transfer	 	28	%	 	5	%	 21	%	

break-up		 	51		%	 78.6	 57	%	

Approaching the same problem in a coupled-channel approach 
(including or not the continuum) 

OBS:  Proper definition of continuum states.  Target continuum ? 
 projectile continuum ?  both continua? 



The interest in haloes and weak-binding is not so much in the 
“static” behavior but rather in the dynamical effects in the 

response of these systems to different probes (B(E1) 
distribution etc).  From the reaction point of view the weak-

binding nature of halo nuclei favors the dominance of break-up 
channels, and the key question is the effect of the strong break-

up channels and coupling to continuum states on the different 
collision processes (elastic scattering, direct reactions, fusion, 

etc). 

It is well established the way in which coupling to excited bound 
channels effect, for example the elastic channel (cf. Feshbach 
theory).  But will the effect change if the excited states are in 
the continuum? Continuum-continuum strong coupling will change 

the picture? 



Evidence for long-range Coulomb 
polarization potential 

Polarization potentials due 
to nuclear coupling are 
normally short-ranged.  
On the opposite, the  
contribution due to 
coulomb excitation is 
long-ranged (1/r5).   
In the case of large 
couplings (as the coupling to 
the rotational 2+ state in the 
deformed 184W), this 
gives rise to characteristic 
patterns in the elastic 
scattering angular  
distribution 

Text-book example 

σ
/σ

ru
th

 

theta 

l	

with long-ranged 
polarization 
potential 

without 

Transmission coefficient 

“standard” with long-ranged 
polarization 
potential 

Elastic angular distribution 

16O + 184W 



The coupling to continuum is reflected in the nuclear 
ion-ion potentials, absorptive potentials and couplings 
used in direct reactions that are normally short-
ranged, with a shape that follows nuclear densities. 
The more striking effect in elastic scattering with 
weakly-bound halo nuclei is that one seems to need a 
long-ranged absorption that starts to be active also at 
bombarding energies well below the Coulomb barrier 
(and therefore at large distances), indicating the 
presence of long-ranged nuclear couplings in addition 
of the usual Coulomb interaction.		
In addition the real part of the polarization potential 
seems to be repulsive for weakly-bound systems, at 
variance with standard case.  Anomaly of the 
“threshold anomaly”? Peculiar nuclear-Coulomb 
interference processes? 



Normal versus halo nuclei: the He case 

● 6He+208Pb shows a reduction in the elastic cross section  
    due to the flux going to other reaction channels  
    (transfer, break-up or fusion?). 
● 6He+208Pb requires a large imaginary diffuseness  
                long-range absorption L. Acosta et al PHYS. REV. C 84, 044604 (2011) 



Best example: 9,10,11Be + 64Zn  (Di Pietro etal, LNS) 

Optical model analysis 

For 9,10Be one can use a diffusivity  
         a = 0.7 fm (standard value) 

But for 11Be one needs to add a term  
        with a diffusivity a = 3 fm 
              (unusually long range) 



9,10,11Be + 64Zn 	

Transmission coefficient 

9	
10	

11	

11Be + 64Zn 	

Effect of the long-range term 
In optical potential 



Origin of the long-ranged term from Coulomb 
and nuclear couplings to continuum (break-up) states 

nuclear 

coulomb 
form factors to 
continuum states  
(theory, Dasso,  
Lenzi, Vitturi) 



It is similarly well established the way in which coupling to bound  
inelastic or bound  transfer channels effect subbarrier fusion reactions,  
leading to strong enhancement of the subbarrier fusion 

48Ca + 90,96Zr 
LNL data 

Coupling to  
vibrational 
states	

Simple case: two 
channels                      
(costant coupling)	

Effective 
barrier splitting	



Will	coupling	to	conCnuum	channels	change	the	picture?		
Are	break-up	channels	irreversible	processes?	
Complex	inelasCc	form	factors	to	conCnuum	are	responsible	for	
a	change	of	the	behavior?	

The challenging question: 

Whether the coupling to break-up channels enhances or hinders the subbarrier  
fusion is still an open question (after 20 years).  Problem of reference (enhancement 
or suppression with respect to what?)? 



Conclusions 

Inclusion of continuum states in both structure and reaction studies 
is unavoidable .  Coupling and dynamical interaction with these states 
strongly affect also the close bound part of the spectrum.  This presents,  
however, novel features with respect to the standard coupling processes to  
excited, but still bound, states. 


