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The possibility of reaching systems that are progressively closer to the drip lines
(and that can eventually go beyond) has raised an increasing interest on the role
of continuum states, both in structure and reactions, both theoretically and
experimentally.

In nuclear structure one faces the situation not only of low-lying excited states
that are above the particle emission threshold (that are therefore naturally in the
continuum), but also the situation of bound states whose description and nature
rely on the coupling to the close continuum states.

Similarly in nuclear reactions, due to the vicinity of the continuum, a ruling
role is played by final states in the continuum (break-up channels). But again
this dominant coupling to the continuum is strongly affecting also the
characteristics of the population of final states that are in the bound sector.



The problem of continuum, and simple solutions, are however an old story.

For example in the description of giant resonance with DISCRETE RPA, where

the strength of each high-lying state is distributed along a gaussian or lorentzian ,
as a simpler alternative to a full continuum RPA

Example: Dipole response, with GDR and PDR, with Skyrme HFB plus RPA

60
E g 40
Ng Ng
p =
W 20 )
@ @ 20
0 T ' byl LU -M.,J I ™ 0
0 5 10 15 20 25 0
E (MeV)

NB Of course, additional contribution to the full width comes from the
coupling to 2p-2h states (mixing width)



Many microscopic structure models (typical example the Shell Model) are

based on an expansion starting from a single-particle basis (generally truncated).
Leaving the stability valley the number of (Fermi allowed) available bound states
reduces, and the continuum part of the spectrum has to be included.

Generally one resorts to appropriate DISCRETIZATION procedure, in order to

deal with a set of square-integrable states.

Typical methods (that provide different distribution and energy densities of state)
are based on

« Harmonic oscillator (HO)

* Transformed Harmonic Oscillator (THO)

« Box with infinite wells

« Gamow complex states

* Bunching of true continuum states into slices (CDCC)

All models are equivalent as long as one uses the full basis, but convergence may
require extremely large bases, in particular for the tail and for weakly-bound
states.
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Example: Diagonalization in a box

WS single-particle states obtained imposing boundary conditions at a box (R=20 fm)

Woods Saxon in a Box Woods-Saxon in the Box
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Energies of the bound states converge rather rapidly, but not the radial tails.
Large dimension are needed to get acceptable behaviors at large distances
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Particle-hole response from the 6 ||
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Interplay of resonant and non-resonant continuum
(leads to caution in the choice of energy step in discretization procedure)

An example: quadrupole excitation of 7Li described as alpha+triton model
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Moving from the case of just one particle in the continuum to cases with more
particles in the continuum. More interesting because it involves continuum-
continuum couplings

Simple test case in structure
Two valence particles, moving in a one-dimensional
Woods-Saxon potential V,, interacting via a residual
density-dependent short-range attractive interaction.
Modelling a drip-line system, one can choose the Fermi surface in such a way
that there are no available bound states, and the two unperturbed particles
must be in the continuum. The residual interaction
V(x1.X2) = Vo 3(x1-%2) p((X1+x2)/2)/pg
can be chosen in such a way that the final correlated wave function is
however bound. Such a system is normally called "Borromean”
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Correlated
two-particle
wave-function
expanded over
discretized
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positive energy
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Application to the ground states of ®He (bound), 22C (bound) and
260 (unbound)

Example: 260 described as 2*O+2n with density-dependent pairing and
continuum discretization
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A different approach: BCS with discretized continuum states

Important points:

* what is the shape of the occupancy of the different continuum
states?

* how changes the pairing gap as the Fermi energy crosses the
continuum threshold?

* what is the interplay of resonant and non-resonant continuum?
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Basic problem: how the properties of the pairing interaction
eventually change as the Fermi surface crosses the continuum
threshold

Example: proton knocked-out from 27F

In 27F the 9 protons create a neutron mean field that binds

The last two neutrons. On the other hand, in 260, the remaining

8 protons cannot bind the two neutrons. But the correlations in the
bound neutron pair is the same as in the unbound pair? How sensitive
are the correlation fo the form of the pairing interaction?

Density dependent? Volume or surface pairing, or proper mixture?



How all this will be reflected on two-particle transfer processes?

Main model in well-bound systems: Sequential two-step process.
Each step transfers one particle

Pairing enhancement comes from the coherent interference of the
different paths through the different intermediate states in (a-1) and (A
+1) nuclei, due to the correlations in initial and final wave functions

Basic idea: dominance of mean field, which provides the framework for
defining the single-particle content of the correlated wave functions

Expansion to second-order in the transfer potential

Simultaneus + Sequential + hot-orthogonality

(firgt-or (second-order) (second-grder)

this is not the these two terms

cluster approximately cancel
contribution each other



one-particle .
transfer 3
j2
j1
A+l
A

Basic problem:

/

Normal
well-bound
systems
(infermediate
bound states)

A+2

how is changed the picture as we move closer

or even beyond the drip lines?



Systems
closer to the drip

one-particle lines
transfer to (infermediate
continuum bound and unbound

states)

A A+2

Example
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— Systems

at the drip lines
(intermediate
unbound
states)
Example
11Li(p,t)OLi
8He(p,t)6He

one-particle
transfer process

WY

A+2

| A=2> = [ dEX(E) [a*(EB)a*(E)], | A>

Two-particle trasfer will proceed mainly by
constructive interference of successive transfers
through the (unbound) continuum intermediate states



one-particle
transfer process

Discretized
COTTiiraarn
/ A+l N
A+2
A

The integration over the continuum intermediate states
can becomes feasible by continuum discretization:

but how many paths should we include? Thousands or few,
for example only the resonant states?



Let us move now to the reactions.
For weakly-bound systems the break-up channel becomes dominant.
To describe the physical aspect let me consider a simple one-dimensional case

Single particle, initially moving ina  one-dimensional
Woods-Saxon potential V,, perturbed by a
time-dependent interaction V(x,t), assumed to be of

gaussiam shape

V(x,t)=V exp(-t2/0;) exp( -(x-xq)?/0,)

Obs: simulation of the nuclear field generated in a collision with
a heavy partner



Exact full evolution of the system obtained
by solving the time-dependent Schroedinger

equation
ihaw(x,1)/at = [Hy + V(x,1)] W(x,1)
with

Ho = -(h2/2u) d2/dx2 + Vy(x)

The particle is

assumed to be initially

in one of the bound states
D\ (x) of V,

potential, wavefunctions
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initial bound state
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The same problem can be approached in

the "'standard’’ coupled-channel formalism

where the Schrodinger equation is solved by
expanding the total wave function into a stationary
basis.

In this case the choice and the treatment of
continuum states are already essential in the
proper description of the evolution of the system
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Coupling matrix elements in the stationary basis

Continuum-continuum

F(Ei Ej )= <@(E;:x)|v(x)| D(E:x)> \'

I
Bound-continuum — 20_- .
Fi (Ej) = <@,(x)|v(x)| ©(E:x)> 5
-20- ‘ i
—— ~
Bound-bound B ‘
Fiy = <) [v(x) | @;(x)> o




Case of partial
break-up
starting from a

deeply-bound
orbital (N=3)

Final Q-value
distribution
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Case of partial
break-up
starting from a
weakly-bound
orbital

Fundamental role of
continuum-continuum
couplings

Coupled-channel results
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Case of partial
break-up
starting from a
weakly-bound
orbital

Role of
multistep
processes
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Effects of continuum channels: another simple case.
Processes involving just one active particle
and two moving cores (possibilities of inelastic, transfer and break-
up channels)

Our particle is initially sitting on a single-particle level of a one-
body potential and feels the action of a second moving potential.

At the end of the process the wave function of the particle is
a) partly inside the initial well (elastic and inelastic processes)
b) partly inside the moving well (transfer process)

c) partly moving outside of the two wells (break-up process)

The different components can be obtained by projecting the
final wave function on the eigenfunctions of the two wells, as well

as on the continuum states
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The two moving

potentials
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Time evolution
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Approaching the same problem in a coupled-channel approach

(including or not the continuum)

Final Exact CC (with only CC (with bound

population bound and continuum
states) target states)

elastic 20.7 % 95 % 21.4 %

transfer 28 % 5%

break-up 51 % 78.6

CC (with bound and
continuum states in
both target and
projectile)

21 %
21 %
57 %

OBS: Proper definition of continuum states. Target continuum ?

projectile continuum ? both continua?



The interest in haloes and weak-binding is not so much in the
"static” behavior but rather in the dynamical effects in the
response of these systems to different probes (B(E1)
distribution etc). From the reaction point of view the weak-
binding nature of halo nuclei favors the dominance of break-up
channels, and the key question is the effect of the strong break-
up channels and coupling to continuum states on the different
collision processes (elastic scattering, direct reactions, fusion,
etc).

It is well established the way in which coupling to excited bound

channels effect, for example the elastic channel (cf. Feshbach

theory). But will the effect change if the excited states are in

the continuum? Continuum-continuum strong coupling will change
the picture?



Polarization potentials due

to nuclear coupling are
normally short-ranged.

On the opposite, the
contribution due to

coulomb excitation is
long-ranged (1/r>).

In the case of large
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The coupling to continuum is reflected in the nuclear
ion-ion potentials, absorptive potentials and couplings
used in direct reactions that are normally short-
ranged, with a shape that follows nuclear densities.
The more striking effect in elastic scattering with
weakly-bound halo nuclei is that one seems to need a
long-ranged absorption that starts to be active also at
bombarding energies well below the Coulomb barrier
(and therefore at large distances), indicating the
presence of long-ranged nuclear couplings in addition
of the usual Coulomb interaction.

In addition the real part of the polarization potential
seems to be repulsive for weakly-bound systems, at
variance with standard case. Anomaly of the
“threshold anomaly”? Peculiar nuclear-Coulomb
interference processes?



Normal versus halo nuclei: the He case

“He+®Pb @ E=22 MeV ®He+*®Pb @ E=22 MeV
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« %He+208Pp shows a reduction in the eladtic cross section
due to the flux going to other reactior] channels
(transfer, break-up or fusion?).

« ®He+298Pb requires a large imaginary diffuseness

L. Acosta et al PHYS. REV. C 84, 044604 (2011) long-range absorption




Best example: 21011Be + 64Zn (Di Pietro etal, LNS)

Optical model analysis

11

a = 0.7 fm (standard value) (unusually long range)
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--+ OM: bare
— OM: bare + DPP | 1Be + 647Zn

Effect of the long-range term
In optical potential
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It is similarly well established the way in which coupling to bound

inelastic or bound transfer channels effect subbarrier fusion reactions,
leading to strong enhancement of the subbarrier fusion

100 Simple case: two
channels T ‘”'—*—Q
1ol : (costant coupling) o
48Cq + 90.967p Ll i |
‘{0 iphonon
LNL data _bE >
£ 01f ¢!/ ¢ ) 4
. :'é’ 480, 4 907p . 7Y GO0 o
Coupling to 00|
vibrational Y - W
100 Qs ) 4 5
states g Effective 2
d o Present data . o .
1 I barrier splitting
----- no coupl.
01}

[N i 1 1 1
90 95 100 105 110
E_ (MeV)

c.m.



Will coupling to continuum channels change the picture?

Are break-up channels irreversible processes?

Complex inelastic form factors to continuum are responsible for
a change of the behavior?

The challenging question:

RAPID COMMUNICATIONS

PHYSICAL REVIEW C VOLUME 50, NUMBER 1 JULY 1994

Does the presence of !'Li breakup channels reduce the cross section for fusion processes?

C. H. Dasso? and A. Vitturi®

Whether the coupling to break-up channels enhances or hinders the subbarrier

fusion is still an open question (after 20 years). Problem of reference (enhancement
or suppression with respect to what?)?



Conclusions

Inclusion of continuum states in both structure and reaction studies

is unavoidable . Coupling and dynamical interaction with these states
strongly affect also the close bound part of the spectrum. This presents,
however, novel features with respect to the standard coupling processes to
excited, but still bound, states.



