Cluster transfer as spectroscopic tool: understanding the reaction process #### Riccardo Raabe KU Leuven, Instituut voor Kern- en Stralingsfysica Introduction ●○○○○○ TLi+98Rb ○○○○ α yields ○○○ Summary ○ ## Introduction ## **Energy regime** Around the Coulomb barrier (from just below up to ≈2 times above) #### **Reaction mechanism** Compound nucleus Deep inelastic Cluster transfer Nucleon transfer Inelastic and elastic scattering ## **Nucleon-transfer reactions** Selectivity of final channel Few units of angular momentum transferred Provide spectroscopic information (single-particle structure) Methods: Coupled channels, DWBA, CDCC... # **Deep-inelastic reactions** - Access to nuclei otherwise difficult to produce directly - High angular momentum transfer - Statistical methods # **Deep-inelastic reactions** See talk by B. Fornal (EURORIB 2018) ## **Deep-inelastic reactions: cross sections** PHYSICAL REVIEW C 89, 054608 (2014) #### Formation of light exotic nuclei in low-energy multinucleon transfer reactions V. I. Zagrebaev, ¹ B. Fornal, ² S. Leoni, ³ and Walter Greiner ⁴ ¹Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia ²The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ³Dipartimento di Fisica, University of Milano, Milano, Italy ⁴Frankfurt Institute for Advanced Studies, J.W. Goethe-Universität, Frankfurt, Germany (Received 13 March 2014; published 9 May 2014) - Coupled Langevin-type dynamical equations of motion - Adiabatic multidimensional potential energy surface - Friction coefficients, inertia parameters, N/Z equilibration, damping Experiment E656 at GANIL with VAMOS+AGATA+PARIS (July 2017) See talk by B. Fornal (EURORIB 2018) **KU LEUVEN** # **Deep-inelastic reactions: cross sections** Physics Letters B 779 (2018) 456-459 Contents lists available at ScienceDirect #### Physics Letters B www.elsevier.com/locate/physletb Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of ^{18}O on a ^{238}U target I. Stefan ^{a,*}, B. Fornal ^b, S. Leoni ^{c,d}, F. Azaiez ^{a,1}, C. Portail ^a, J.C. Thomas ^e, A.V. Karpov ⁱ, D. Ackermann ^e, P. Bednarczyk ^b, Y. Blumenfeld ^a, S. Calinescu ^h, A. Chbihi ^e, M. Ciemala ^b, N. Cieplicka-Oryńczak ^{b,d}, F.C.L. Crespi ^{c,d}, S. Franchoo ^a, F. Hammache ^a, Ł.W. Iskra ^b, B. Jacquot ^e, R.V.F. Janssens ^{f,2}, O. Kamalou ^e, T. Lauritsen ^f, M. Lewitowicz ^e, L. Olivier ^a, S.M. Lukyanov ⁱ, M. Maccormick ^a, A. Maj ^b, P. Marini ^{g,3}, I. Matea ^a, M.A. Naumenko ⁱ, F. de Oliveira Santos ^e, C. Petrone ^h, Yu.E. Penionzhkevich ^{i,k}, F. Rotaru ^h, H. Savajols ^e, O. Sorlin ^e, M. Stanoju ^h. B. Szpak ^b, O.B. Tarasov ^{i,j}, D. Vernev ^a #### PHYSICAL REVIEW C 96, 024618 (2017) Modeling near-barrier collisions of heavy ions based on a Langevin-type approach A. V. Karpov* and V. V. Saiko Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia and Dubna State University, 141982 Dubna, Russia (Received 7 June 2017; published 23 August 2017) Nuclear Physics A524 (1991) 121-140 North-Holland #### **DEEP INELASTIC TRANSFERS** A way to dissipate energy and angular momentum for reactions in the Fermi energy domain L. TASSAN-GOT and C. STÉPHAN Institut de Physique Nucléaire 91406 ORSAY Cedex, France ¹⁸O+²³⁸U at LISE See talk by B. Fornal (EURORIB 2018) ## **Cluster-transfer reactions** - Selective, and - Large angular momentum transfer ### ⁷Li-induced reactions G. D. Dracoulis et al., J. Phys. G: Nucl. Part. Phys. 23, 1191 (1997) S.M. Mullins et al., Phys. Rev. C 61, 044315 (2000) A. Jungclaus et al., Phys. Rev. C 67, 034302 (2003) R.M. Clark et al., Phys. Rev. C 72, 054605 (2005) D.S. Judson et al., Phys. Rev. C 76, 054306 (2007) H. Watanabe et al., Phys. Rev. C 79, 024306 (2009) PHYSICAL REVIEW C 92, 024322 (2015) #### Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei S. Bottoni, ^{1,2,3,*} S. Leoni, ^{1,2,†} B. Fornal, ⁴ R. Raabe, ³ K. Rusek, ⁵ G. Benzoni, ² A. Bracco, ^{1,2} F. C. L. Crespi, ^{1,2} A. I. Morales, ² P. Bednarczyk, ⁴ N. Cieplicka-Oryńczak, ^{2,4} W. Królas, ⁴ A. Maj, ⁴ B. Szpak, ⁴ M. Callens, ³ J. Bouma, ³ J. Elseviers, ³ H. De Witte, ³ F. Flavigny, ^{3,6} R. Orlandi, ^{3,7} P. Reiter, ⁸ M. Seidlitz, ⁸ N. Warr, ⁸ B. Siebeck, ⁸ S. Hellgartner, ⁹ D. Mücher, ⁹ J. Pakarinen, ¹⁰ M. Vermeulen, ¹¹ C. Bauer, ¹² G. Georgiev, ¹³ R. V. F. Janssens, ¹⁴ D. Balabanski, ¹⁵ M. Sferrazza, ¹⁶ M. Kowalska, ¹⁷ E. Rapisarda, ¹⁷ D. Voulot, ¹⁷ M. Lozano Benito, ¹⁷ and F. Wenander ¹⁷ | z | 91Nb | 92Nb | 93Nb | 94Nb | 95365 | 96345 | 97Nb | 9100 | 99945 | 100045 | 101MP | 1029% | 103346 | 10496 | 10586 | 10686 | 107Nb | |----|------|-------|------|------|-------|-------|------|------|-------|--------|-------|-------|--------|-------|-------|-------|-------| | | 90Zr | 91Zr | 92Zr | 93Zr | 94Zr | 95Zr | 96Zr | 97Zz | 90Zr | 99Zr | 1002r | 101Zr | 102Zr | 103Zr | 104Zr | 105Zr | 106Zr | | 39 | 09Y | 907 | 91Y | 92Y | 93Y | 94Y | 95Y | 96Y | 977 | 907 | 99Y | 1007 | 1017 | 102Y | 103Y | 104Y | 105Y | | | 80Sr | 89Sr | 90Sr | 91Sr | 925r | 930r | 945r | 955z | 965r | 97Sr | 98St | 99Sr | 1005 | 101Sr | 1025r | 1035r | 1045r | | 37 | 97Rb | HRb | 07Rb | 908b | 91Rb | 9280 | 93Rb | 94Rb | 95Rb | 96Rb | 97Rb | 7153 | 198a | 1008b | 10186 | 10286 | 103Rb | | | 06Kr | 07Kr | HKr | 09Kr | 90Kr | 91Kr | 92Kr | 93Kr | 94Kr | 95Kr | 96Kr | 97Kr | 90Kr | 99Kr | 100Kr | 101Kr | | | 95 | 85By | 06Br | 07Be | ORBy | 09Br | 908r | 91Br | 928r | 938r | 94Br | 95Br | 96Br | 97Br | 918r | | | | | | 84Se | 055e | 865e | 875e | BISe | 895e | 905e | 91Se | 925e | 935e | 945e | 955e | | | | | | | 33 | 83Aa | 84.64 | BSAu | 86Au | 87Aa | BBAs | 89Aa | 90As | 91As | 92As | | | | | | | | | | 50 | | 52 | | 54 | | 50 | | 50 | | 60 | | 62 | | 64 | | N | 98Rb beam 2.85 MeV/nucleon 2x10⁴ pps ≈1/3 98Sr contaminant ⁷Li target (LiF) 1.5 mg/cm² Detection: Miniball + CD ## **Observed channels** - Products flying forward - → Doppler correction does not need recoil detection - Detection of α or t - → identification of channel #### **Observed** - Elastic and inelastic - α and t transfer - [⁷Li direct break-up] - 1n-stripping + break-up - 1p-stripping - Fusion (¹⁰⁵Zr) -evaporation to ¹⁰⁰Zr # Cluster transfer: populated nuclei | (MeV) | t transfer | α transfer | | | | |--|------------|------------|--|--|--| | $\overline{Q_{ m gg}}$ | 13.6 | 7.6 | | | | | $Q_{ m opt}$ | -5.1 | -10.4 | | | | | $Q_{ m gg}$ $Q_{ m opt}$ $E_{ m opt}^*$ S.E. | 18.7 | 18 | | | | | S.E. | 16 | 10 | | | | #### From Cascade: - Spin in product ≈20ħ for t transfer ≈15ħ for α transfer - E*, spin in residues 6 MeV, 16ħ for 2n 2 MeV, 9.5ħ for 3n ## **Cross sections** - Model: binary process, direct transfer of a particle - Ingredients: - optical potentials (7 Li+ 98 Rb, α + 101 Sr, t+ 102 Y) - models for structure → clusters for ⁷Li and final nuclei - binding potentials gaussian for ⁷Li, WS for final nuclei - Population of states in the continuum: <u>weakly-bound approximation</u> 1-step DWBA with ℓ up to 5 ### **Cross sections** - Model: binary process, direct transfer of a particle - Ingredients: - optical potentials $(^{7}\text{Li} + ^{98}\text{Rb}, \alpha + ^{101}\text{Sr}, t + ^{102}\text{Y})$ - models for structure → clusters for ⁷Li and final nuclei - binding potentials gaussian for ⁷Li, WS for final nuclei - Population of states in the continuum: weakly-bound approximation 1-step DWBA with ℓ up to 5 Satisfactory description of the process in terms of a direct transfer # Calculations of α yields: J. Lei & A. Moro PHYSICAL REVIEW C 95, 044605 (2017) #### Comprehensive analysis of large α yields observed in ⁶Li-induced reactions Jin Lei* and Antonio M. Moro Departamento de FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain - EBU in CDCC - NEB in DWBA (Ichimura, Austern, and Vincent model): transfer to the continuum (complex potential) extended to bound states # Calculations of α yields: J. Lei & A. Moro #### α yields: dominated by NEB # Calculations of α yields: J. Lei & A. Moro - Very good agreement with data - Prediction of cross sections in function of E* Angular distributions # Summary - Multinucleon transfer reactions: tool to produce & study nuclei, otherwise difficult to access - Large angular momentum transfer → population of high-spin states - Cluster-transfer reactions: - selectivity - experimentally "easy" - Cross sections interpreted in the frame of direct transfer Now with predictive power