Cluster transfer as spectroscopic tool: understanding the reaction process

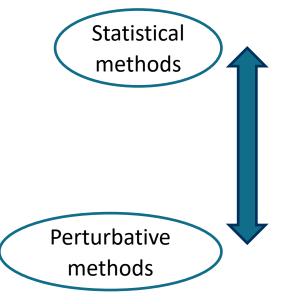
Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

Introduction ●○○○○○

TLi+98Rb ○○○○

α yields ○○○

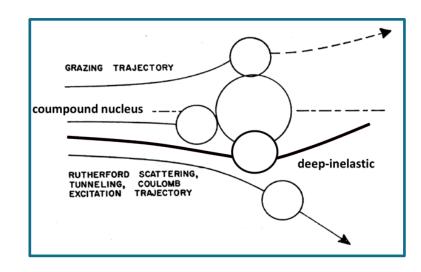

Summary ○

Introduction

Energy regime

Around the Coulomb barrier (from just below up to ≈2 times above)

Reaction mechanism

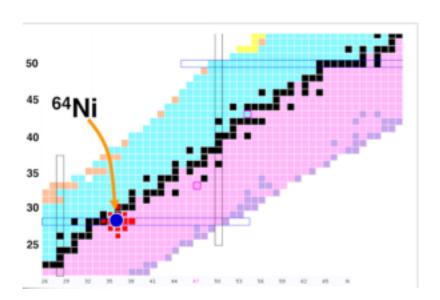

Compound nucleus

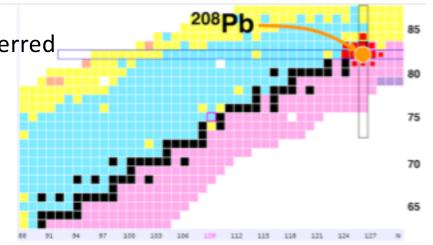
Deep inelastic

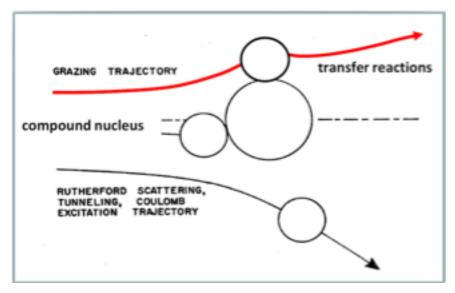
Cluster transfer

Nucleon transfer

Inelastic and elastic scattering

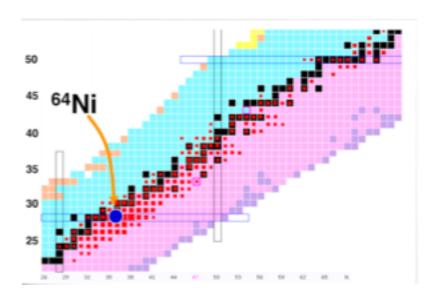


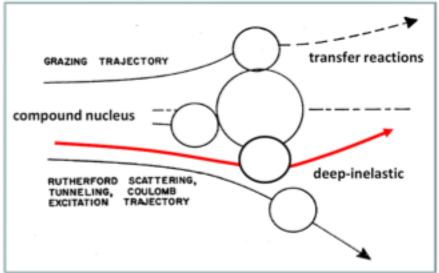



Nucleon-transfer reactions

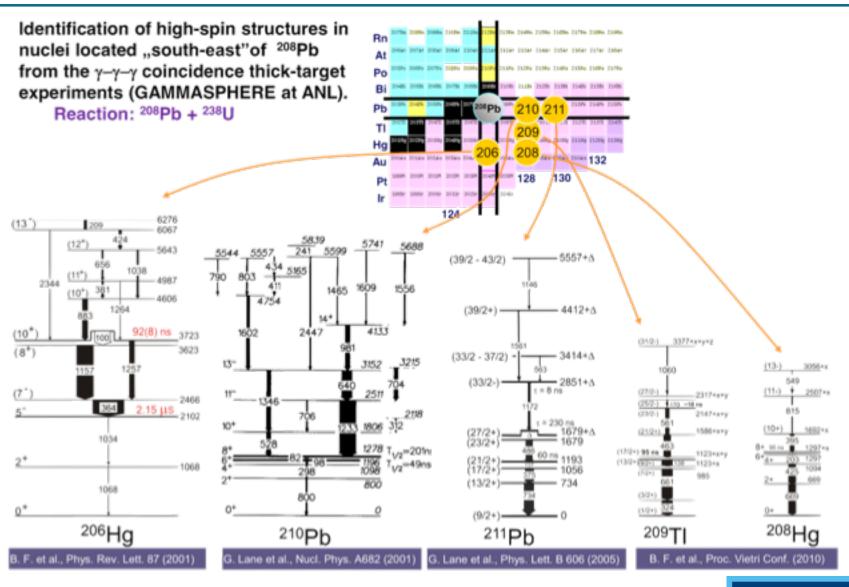
Selectivity of final channel
 Few units of angular momentum transferred
 Provide spectroscopic information
 (single-particle structure)

 Methods: Coupled channels, DWBA, CDCC...





Deep-inelastic reactions


- Access to nuclei otherwise difficult to produce directly
- High angular momentum transfer
- Statistical methods

Deep-inelastic reactions

See talk by B. Fornal (EURORIB 2018)

Deep-inelastic reactions: cross sections

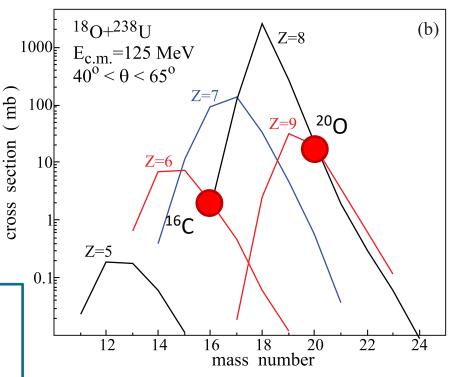
PHYSICAL REVIEW C 89, 054608 (2014)

Formation of light exotic nuclei in low-energy multinucleon transfer reactions

V. I. Zagrebaev, ¹ B. Fornal, ² S. Leoni, ³ and Walter Greiner ⁴

¹Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia

²The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland


³Dipartimento di Fisica, University of Milano, Milano, Italy

⁴Frankfurt Institute for Advanced Studies, J.W. Goethe-Universität, Frankfurt, Germany

(Received 13 March 2014; published 9 May 2014)

- Coupled Langevin-type dynamical equations of motion
- Adiabatic multidimensional potential energy surface
- Friction coefficients, inertia parameters,
 N/Z equilibration, damping

Experiment E656 at GANIL with VAMOS+AGATA+PARIS (July 2017)

See talk by B. Fornal (EURORIB 2018)

KU LEUVEN

Deep-inelastic reactions: cross sections

Physics Letters B 779 (2018) 456-459

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of ^{18}O on a ^{238}U target

I. Stefan ^{a,*}, B. Fornal ^b, S. Leoni ^{c,d}, F. Azaiez ^{a,1}, C. Portail ^a, J.C. Thomas ^e, A.V. Karpov ⁱ, D. Ackermann ^e, P. Bednarczyk ^b, Y. Blumenfeld ^a, S. Calinescu ^h, A. Chbihi ^e, M. Ciemala ^b, N. Cieplicka-Oryńczak ^{b,d}, F.C.L. Crespi ^{c,d}, S. Franchoo ^a, F. Hammache ^a, Ł.W. Iskra ^b, B. Jacquot ^e, R.V.F. Janssens ^{f,2}, O. Kamalou ^e, T. Lauritsen ^f, M. Lewitowicz ^e, L. Olivier ^a, S.M. Lukyanov ⁱ, M. Maccormick ^a, A. Maj ^b, P. Marini ^{g,3}, I. Matea ^a, M.A. Naumenko ⁱ, F. de Oliveira Santos ^e, C. Petrone ^h, Yu.E. Penionzhkevich ^{i,k}, F. Rotaru ^h, H. Savajols ^e, O. Sorlin ^e, M. Stanoju ^h. B. Szpak ^b, O.B. Tarasov ^{i,j}, D. Vernev ^a

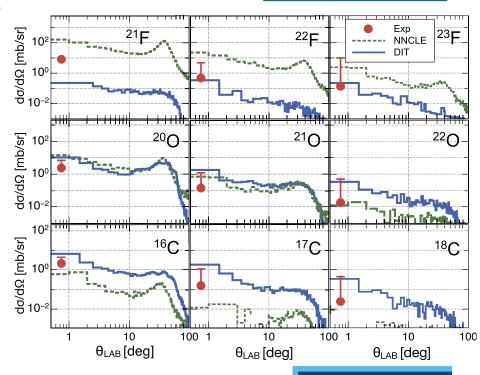
PHYSICAL REVIEW C 96, 024618 (2017)

Modeling near-barrier collisions of heavy ions based on a Langevin-type approach

A. V. Karpov* and V. V. Saiko
Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia
and Dubna State University, 141982 Dubna, Russia
(Received 7 June 2017; published 23 August 2017)

Nuclear Physics A524 (1991) 121-140 North-Holland

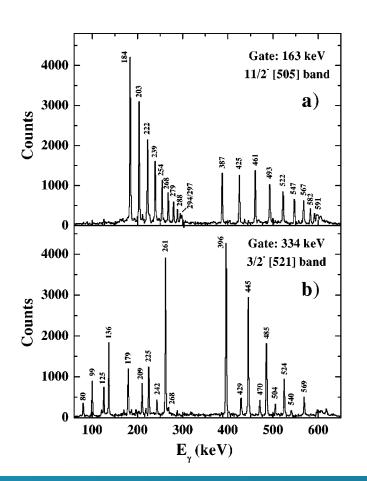
DEEP INELASTIC TRANSFERS


A way to dissipate energy and angular momentum for reactions in the Fermi energy domain

L. TASSAN-GOT and C. STÉPHAN

Institut de Physique Nucléaire 91406 ORSAY Cedex, France

¹⁸O+²³⁸U at LISE



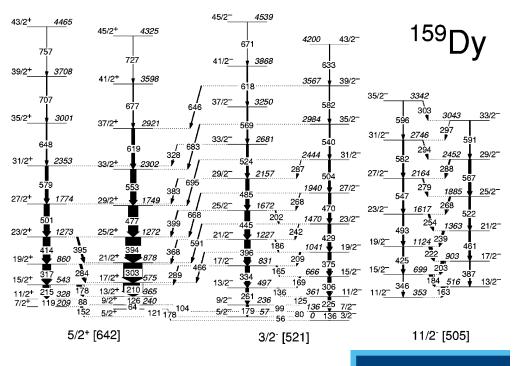
See talk by B. Fornal (EURORIB 2018)

Cluster-transfer reactions

- Selective, and
- Large angular momentum transfer

⁷Li-induced reactions

G. D. Dracoulis et al., J. Phys. G: Nucl. Part. Phys. 23, 1191 (1997)


S.M. Mullins et al., Phys. Rev. C 61, 044315 (2000)

A. Jungclaus et al., Phys. Rev. C 67, 034302 (2003)

R.M. Clark et al., Phys. Rev. C 72, 054605 (2005)

D.S. Judson et al., Phys. Rev. C 76, 054306 (2007)

H. Watanabe et al., Phys. Rev. C 79, 024306 (2009)

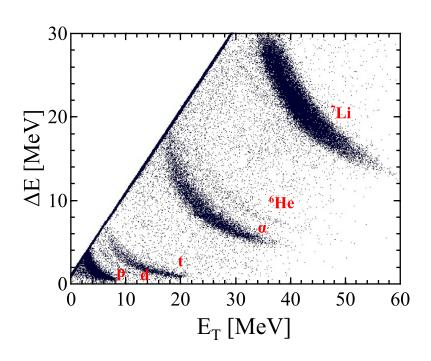
PHYSICAL REVIEW C 92, 024322 (2015)

Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

S. Bottoni, ^{1,2,3,*} S. Leoni, ^{1,2,†} B. Fornal, ⁴ R. Raabe, ³ K. Rusek, ⁵ G. Benzoni, ² A. Bracco, ^{1,2} F. C. L. Crespi, ^{1,2} A. I. Morales, ² P. Bednarczyk, ⁴ N. Cieplicka-Oryńczak, ^{2,4} W. Królas, ⁴ A. Maj, ⁴ B. Szpak, ⁴ M. Callens, ³ J. Bouma, ³ J. Elseviers, ³ H. De Witte, ³ F. Flavigny, ^{3,6} R. Orlandi, ^{3,7} P. Reiter, ⁸ M. Seidlitz, ⁸ N. Warr, ⁸ B. Siebeck, ⁸ S. Hellgartner, ⁹ D. Mücher, ⁹ J. Pakarinen, ¹⁰ M. Vermeulen, ¹¹ C. Bauer, ¹² G. Georgiev, ¹³ R. V. F. Janssens, ¹⁴ D. Balabanski, ¹⁵ M. Sferrazza, ¹⁶ M. Kowalska, ¹⁷ E. Rapisarda, ¹⁷ D. Voulot, ¹⁷ M. Lozano Benito, ¹⁷ and F. Wenander ¹⁷

z	91Nb	92Nb	93Nb	94Nb	95365	96345	97Nb	9100	99945	100045	101MP	1029%	103346	10496	10586	10686	107Nb
	90Zr	91Zr	92Zr	93Zr	94Zr	95Zr	96Zr	97Zz	90Zr	99Zr	1002r	101Zr	102Zr	103Zr	104Zr	105Zr	106Zr
39	09Y	907	91Y	92Y	93Y	94Y	95Y	96Y	977	907	99Y	1007	1017	102Y	103Y	104Y	105Y
	80Sr	89Sr	90Sr	91Sr	925r	930r	945r	955z	965r	97Sr	98St	99Sr	1005	101Sr	1025r	1035r	1045r
37	97Rb	HRb	07Rb	908b	91Rb	9280	93Rb	94Rb	95Rb	96Rb	97Rb	7153	198a	1008b	10186	10286	103Rb
	06Kr	07Kr	HKr	09Kr	90Kr	91Kr	92Kr	93Kr	94Kr	95Kr	96Kr	97Kr	90Kr	99Kr	100Kr	101Kr	
95	85By	06Br	07Be	ORBy	09Br	908r	91Br	928r	938r	94Br	95Br	96Br	97Br	918r			
	84Se	055e	865e	875e	BISe	895e	905e	91Se	925e	935e	945e	955e					
33	83Aa	84.64	BSAu	86Au	87Aa	BBAs	89Aa	90As	91As	92As							
	50		52		54		50		50		60		62		64		N

98Rb beam
2.85 MeV/nucleon
2x10⁴ pps
≈1/3 98Sr contaminant

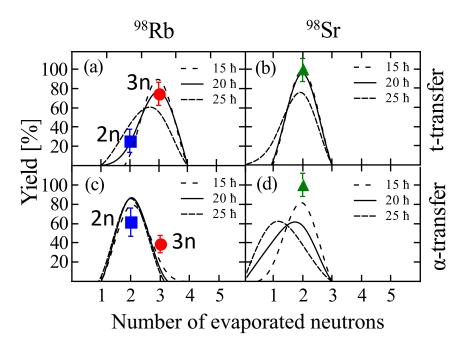

⁷Li target (LiF) 1.5 mg/cm²

Detection: Miniball + CD

Observed channels

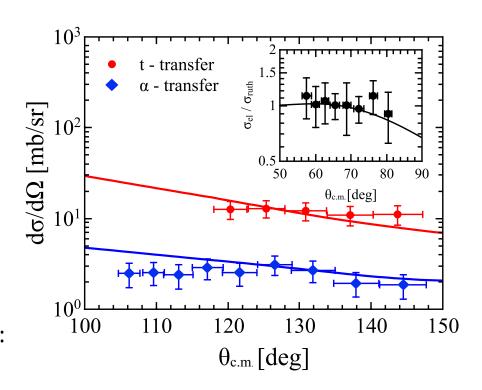
- Products flying forward
 - → Doppler correction does not need recoil detection
- Detection of α or t
 - → identification of channel

Observed


- Elastic and inelastic
- α and t transfer
- [⁷Li direct break-up]
- 1n-stripping + break-up
- 1p-stripping
- Fusion (¹⁰⁵Zr) -evaporation to ¹⁰⁰Zr

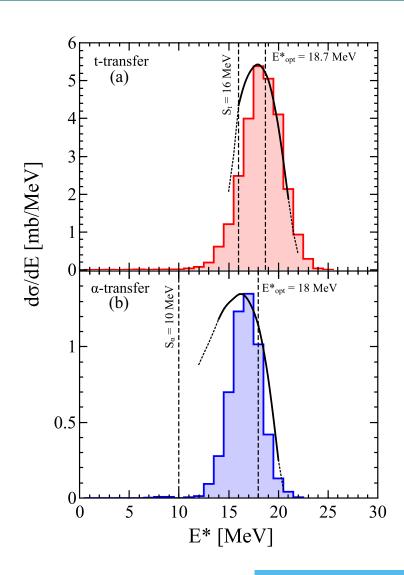
Cluster transfer: populated nuclei

(MeV)	t transfer	α transfer			
$\overline{Q_{ m gg}}$	13.6	7.6			
$Q_{ m opt}$	-5.1	-10.4			
$Q_{ m gg}$ $Q_{ m opt}$ $E_{ m opt}^*$ S.E.	18.7	18			
S.E.	16	10			


From Cascade:

- Spin in product
 ≈20ħ for t transfer
 ≈15ħ for α transfer
- E*, spin in residues
 6 MeV, 16ħ for 2n
 2 MeV, 9.5ħ for 3n

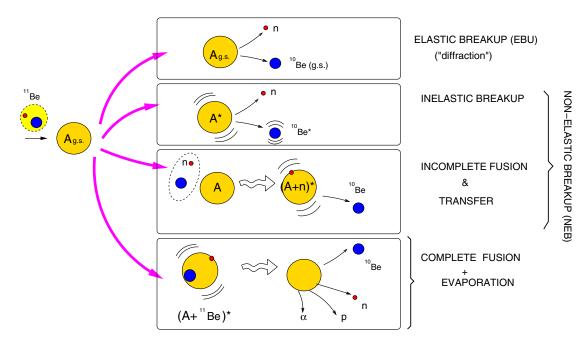
Cross sections


- Model: binary process, direct transfer of a particle
- Ingredients:
 - optical potentials (7 Li+ 98 Rb, α + 101 Sr, t+ 102 Y)
 - models for structure
 → clusters for ⁷Li and final nuclei
 - binding potentials gaussian for ⁷Li, WS for final nuclei
- Population of states in the continuum: <u>weakly-bound approximation</u>
 1-step DWBA with ℓ up to 5

Cross sections

- Model: binary process, direct transfer of a particle
- Ingredients:
 - optical potentials $(^{7}\text{Li} + ^{98}\text{Rb}, \alpha + ^{101}\text{Sr}, t + ^{102}\text{Y})$
 - models for structure → clusters for ⁷Li and final nuclei
 - binding potentials gaussian for ⁷Li, WS for final nuclei
- Population of states in the continuum: weakly-bound approximation 1-step DWBA with ℓ up to 5

Satisfactory description of the process in terms of a direct transfer

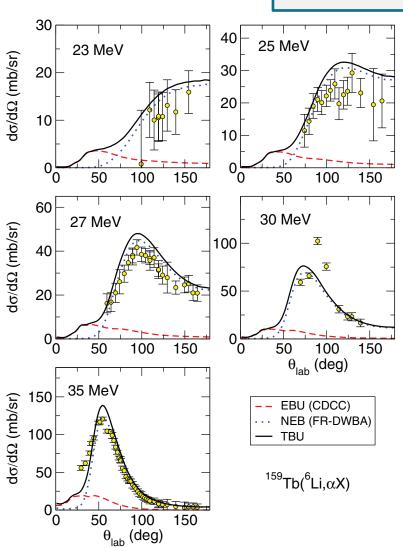


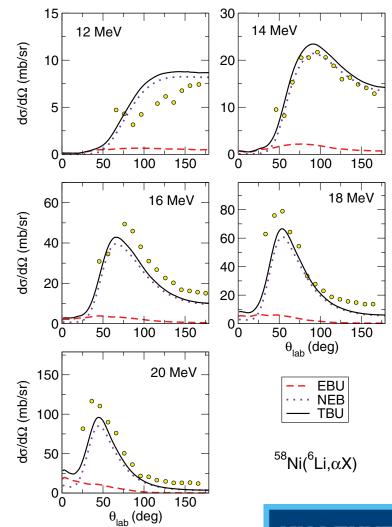
Calculations of α yields: J. Lei & A. Moro

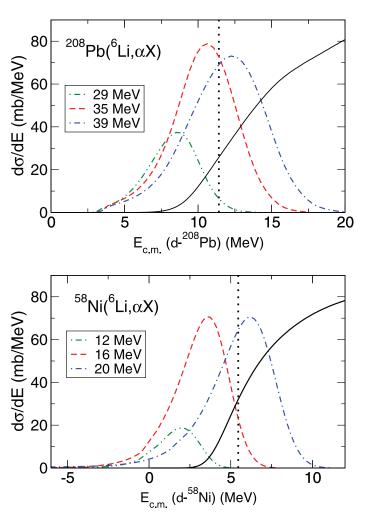
PHYSICAL REVIEW C 95, 044605 (2017)

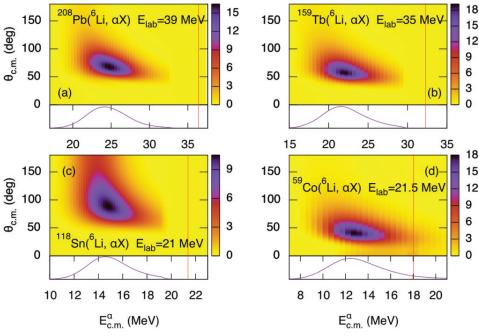
Comprehensive analysis of large α yields observed in ⁶Li-induced reactions

Jin Lei* and Antonio M. Moro Departamento de FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain




- EBU in CDCC
- NEB in DWBA (Ichimura, Austern, and Vincent model): transfer to the continuum (complex potential) extended to bound states


Calculations of α yields: J. Lei & A. Moro


α yields: dominated by NEB

Calculations of α yields: J. Lei & A. Moro

- Very good agreement with data
- Prediction of cross sections in function of E* Angular distributions

Summary

- Multinucleon transfer reactions: tool to produce & study nuclei, otherwise difficult to access
- Large angular momentum transfer → population of high-spin states
- Cluster-transfer reactions:
 - selectivity
 - experimentally "easy"
- Cross sections interpreted in the frame of direct transfer Now with predictive power

